Как это работает: Аэродинамическая прижимная сила. Прижимная сила автомобиля


Аэродинамическая прижимная сила автомобилей

Главная / Multiphysics-online / Аэродинамика автомобилей

Аэродинамическая прижимная сила

Просмотров: 342 Дата публикации: 05.12.2017

При движении автомобиля торможение и ускорение создаются в области контакта между шиной и дорогой, поэтому сильно зависят от вертикальной силы, приложенной на колеса, а также ограничиваются некоторым максимальным коэффициентом трения. Если бы мы смогли каким-то образом увеличить нормальную силу, действующую на колесо, а также максимальное значение коэффициента трения, то боковая сила, возникающая при повороте, также увеличилась бы без потери устойчивости автомобиля. Одним из способов увеличить нормальную силу является увеличение веса автомобиля, но естественно это не самый удачный способ, поскольку это повлияет на его боковую силу в пропорциональном отношении. Следовательно, не удастся улучшить скорость прохождения поворотов, а также автомобиль будет тяжелее.

Для увеличения нормальной силы можно использовать аэродинамическую прижимную силу, причем без добавления дополнительного веса, что позволяет увеличить скорость прохождения поворотов и соответственно уменьшить время прохождения круга. Этот эффект был применен аэродинамиками только в середине 1960-х годов.

С тех пор технологии ушли далеко вперед. Существенно были улучшены аэродинамические аспекты, характеристики двигателя, качество шин, шасси и т.д. Большая часть этих улучшений в различных дисциплинах приводила к улучшению производительности, увеличению максимальной скорости, увеличению скорости в поворотах и соответственно к уменьшению времени прохождения круга. Этот тренд можно продемонстрировать на рисунке зависимости максимальной скорости при прохождении круга с течением времени. С 1950 года можно наблюдать резкое увеличение наклона кривой, что частично может быть связано с проведением аэродинамического эксперимента. Также это связано и с развитием технологий в шинной индустрии. Самый большой скачок в скорости произошел в 1972 году в связи с установкой передних и задних антикрыльев. Интересно, что контролирующие организации сразу же отметили сильное влияние аэродинамики на увеличение скорости, и для уменьшения скорости вводились различные ограничения на использование аэродинамических поверхностей, таких как антикрыльев.

Несмотря на все ограничения, максимальная скорость на круге продолжала расти. В конечном итоге, скорость практически перестает расти и находится в пределах от 365 до 385 км/ч. По-видимому, это связано с недостаточным временем реакции человеческого организма для того, чтобы контролировать ситуацию на дороге, а также с введенными ограничениями для того, чтобы не выходить за эти пределы.

Как было отмечено, одно из самых важных преимуществ аэродинамической прижимной силы является увеличение скорости автомобиля при повороте. Для того, чтобы продемонстрировать этот тренд, давайте рассмотрим две кривые.Если бы улучшения проводились только в технологии производства шин без каких-либо дополнительных несущих поверхностей, то увеличение скорости при повороте двигалось бы по непрерывной синей линии. Пунктирная красная линия представляет собой тренды в производительности современных гоночных автомобилей. Именно за счет использования антикрыльев удалось существенно улучшить эффективность при прохождении поворота. Этот тренд был усилен в конце 1970-х годов за счет использования экранного эффекта, который использовал сам кузов автомобиля для создания дополнительной прижимной силы.

Кроме этого, за счет более улучшенной аэродинамики автомобиль стал намного более устойчивым и управляемым, также сильно улучшилось торможение при больших скоростях, что снова поспособствовало уменьшению времени на круг. Необходимо также отметить, что добавление дополнительных аэродинамических поверхностей увеличивает сопротивление автомобиля, уменьшая максимальную скорость движения по прямой, поэтому для каждой конкретной гонки соотношение прижимной силы и силы сопротивления должно быть тщательным образом подобрано. Уменьшение сопротивления является главной проблемой только для автомобилей, целью которых является достижение максимальной скорости по прямой, а также обычных повседневных автомобилей, для которых важна топливная экономичность.

 

numex.ru

Как это работает: Аэродинамическая прижимная сила

В Формуле 1 эффективность аэродинамики имеет решающее влияние на результат, но создаваемая машиной прижимная сила зависит от нескольких факторов. О них, а также о предстоящих изменениях в регламенте, на страницах британского F1 Racing говорил глава технического департамента Williams Пэт Симондс...

Когда инженеры говорят о прижимной силе или лобовом сопротивлении, они стараются исключить влияние внешних условий. Прижимная сила на скорости за 320 км/ч будет варьироваться в теплый день, когда плотность воздуха низкая, и в холодную погоду, когда плотность значительно выше. Пилоты самолетов знают об этом и корректируют скорость отрыва от взлетно-посадочной полосы, ведь и подъемная сила крыла меняется в зависимости от температуры и давления воздуха.

Чтобы устранить неопределенность, инженеры выражают прижимную силу с помощью так называемого «коэффициента подъема». В случае с прижимной силой - когда крыло направлено вниз - он имеет отрицательное значение. Этот коэффициент, помноженный на плотность воздуха, квадрат скорости и условную площадь, позволяет вычислить значение прижимной силы. Под условной площадью, как правило, понимают площадь лобового сечения машины, многие команды считают её равной 1,5 кв.м., но жестких рамок нет, потому расчет коэффициента подъёма в разных случаях может отличаться.

Предположим, машина имеет коэффициент подъема -3,5. За счет работы в аэродинамической трубе можно улучшить его на сотые доли. Для удобства специалисты по аэродинамике называют значение, равное 0,01, пунктом. Таким образом, при повышении прижимной силы на один пункт значение коэффициента изменится с -3,5 до -3,51. Но добиться даже такого эффекта настолько сложно, что речь обычно идет о тысячных, и каждую такую долю именуют единицей.

Эффект от прогресса в один пункт может варьироваться от трассы к трассе, но повышение коэффициента на 3 пункта позволяет сбросить примерно одну десятую на круге. Учитывая плотность результатов, это может стать решающим фактором.

Создаваемая машиной прижимная сила зависит от величины дорожного просвета, угла установки колес, силы потока выхлопных газов и других факторов. Чтобы оценить взаимное влияние, инженеры изображают их на специальном графике, где по осям размещены, например, величины дорожного просвета на передней и задней осях, а точки показывают уровень прижимной силы.

Форма графика столь же важна в работе над скоростью, как описанные коэффициенты, специалисты по аэродинамике стараются свести её к максимально плавной линии – это позволяет настроить машину таким образом, чтобы при определённой скорости и величине дорожного просвета обеспечить заранее рассчитанное значение прижимной силы. Если форма графика далека от идеальной, подобрать настройки крайне сложно, как и управлять машиной на трассе.

В 2014 году параметры аэродинамического обвеса сильно изменятся. В частности, ширина переднего антикрыла уменьшится с 1800 до 1650 мм, а инженерам придется разместить носовой обтекатель ниже, чтобы гарантировать большую безопасность в случае происшествий.

Аэродинамические элементы машины должны работать, как единое целое, но ключевым остается переднее антикрыло. Когда в 2009 году ширина антикрыла была увеличена, инженерам потребовалось немало времени, чтобы оптимизировать воздушный поток. В результате на антикрыле появились торцевые пластины сложной формы. Теперь края крыла будут смещены к центру машины, на них иначе повлияет вращение передних колес – оптимизацию придётся начинать заново.

В задней части машины сейчас можно увидеть небольшое крыло, обеспечивающее связь воздушного потока, проходящего над машиной, и потока, отводимого от диффузора. В 2014 году этого элемента не будет, и общая эффективность аэродинамики существенно снизится.

Изменится и расположение выхлопа: единственное выхлопное отверстие разместят над коробкой передач, и оно не сможет обеспечить столь значительный эффект, какой создается выхлопной системой сейчас. Если учесть, что верхняя плоскость заднего антикрыла тоже потеряет в площади, уровень прижимной силы снизится и спереди, и сзади.

Сложно сказать, к какой потере в скорости это приведет. Когда новую аэродинамическую спецификацию впервые протестировали в аэродинамической трубе, она оказалась на 30% менее эффективной – и это без выхлопной системы, которая сейчас очень помогает. С тех пор инженерам удалось добиться определенного прогресса, но в начале года мы всё равно увидим существенное снижение скорости.

Возврат к сегодняшнему уровню аэродинамической эффективности с машиной 2014 года потребует времени, но инженеры Формулы 1 весьма изобретательны. В 2009 году изменения в правилах преследовали цель замедлить прогресс, однако неоднозначное толкование правил позволило внедрить двойные диффузоры и добиться гораздо большего эффекта. Ждет ли нас такой же прорыв в 2014-м? Поживем – увидим.

www.f1news.ru

Прижимная сила в аэродинамике - Гоночные автомобили

прижимная сила в аэродинамике

Прижимная сила это давление, создаваемое аэродинамическими характеристиками автомобиля и улучшающее его управление. Оно создается путем обратного использования принципа, по которому для взлета самолета под крыльями создается подъемная сила.

Прижимная сила в автомобилях WRC была самой большой в эпоху «монстров группы B» в начале 1980х годов, когда такие автомобили как Peugeot 205 T16 и Audi Sport Quattro S1 были увешаны множеством спойлеров, сплиттеров и огромных антикрыльев, прижимавших их к земле. Однако с запрещением автомобилей группы B, большинство устройств для создания прижимной силы также были объявлены вне закона.

Поэтому сейчас жесткий технический регламент ограничивает прижимную силу, создаваемую для автомобилей WRC. Однако, по словам нашего эксперта, даже при нынешних ограничениях, существуют, пусть и небольшие, возможности для её создания.

Мы заинтересованы в создании прижимной силы в двух областях – спереди и сзади. Спереди мы достигаем желаемого благодаря управлению воздухом вокруг системы охлаждения и с помощью капота. Однако также существуют приспособления на переднем бампере, расширяющие его и создающие прижимную силу. Вся загвоздка в том, чтобы создать максимум давления, не создавая сопротивления. Это сложная задача.

В задней части автомобиля мы обязательно устанавливаем антикрыло. Его размеры прописаны в регламенте, равно как и его расположение, но затем мы проводим массу тестов в аэродинамической трубе, пытаясь придумать для крыла наиболее эффективную форму – опять же, создавая максимум давления и избегая сопротивления.

Одна из уникальных особенностей автомобиля WRC состоит в том, что он очень часто едет боком. Лорё: « Необходимо рассматривать поведение воздушного потока не только при движении в прямом направлении, но и в тех ситуациях, когда автомобиль едет боком. Это справедливо, пусть и в меньшей степени, и для автомобилей Формулы-1».

Так, аэродинамика вертикальных ребер на раллийных автомобилях разработана таким образом, чтобы создавать прижимную силу в тех ситуациях, когда автомобиль едет боком.

avtogonki.net

Аэродинамика автомобиля

Аэродинамика автомобиля

Зачем это нужно

Для чего нужна аэродинамика автомобилю, знают все. Чем обтекаемее его кузов, тем меньше сопротивление движению и расход топлива. Такой автомобиль не только сбережет ваши деньги, но и в окружающую среду выбросит меньше всякой дряни. Ответ простой, но далеко не полный. Специалисты по аэродинамике, доводя кузов новой модели, еще и:

  • рассчитывают распределение по осям подъемной силы, что очень важно с учетом немалых скоростей современных автомобилей,
  • обеспечивают доступ воздуха для охлаждения двигателя и тормозных механизмов,
  • продумывают места забора и выхода воздуха для системы вентиляции салона,
  • стремятся понизить уровень шумов в салоне,
  • оптимизируют форму деталей кузова для уменьшения загрязнения стекол, зеркал и светотехники.

Причем решение одной задачи зачастую противоречит выполнению другой. Например, снижение коэффициента лобового сопротивления улучшает обтекаемость, но одновременно ухудшает устойчивость автомобиля к порывам бокового ветра. Поэтому специалисты должны искать разумный компромисс.

Снижение лобового сопротивления

От чего зависит сила лобового сопротивления? Решающее влияние на нее оказывают два параметра – коэффициент аэродинамического сопротивления Сх и площадь поперечного сечения автомобиля (мидель). Уменьшить мидель можно, сделав кузов ниже и уже, но вряд ли на такой автомобиль найдется много покупателей. Поэтому основным направлением улучшения аэродинамики автомобиля является оптимизация обтекания кузова, другими словами – уменьшение Сх. Коэффициент аэродинамического сопротивления Сх – это безразмерная величина, которая определяется экспериментальным путем. Для современных автомобилей она лежит в пределах 0,26-0,38. В зарубежных источниках коэффициент аэродинамического сопротивления иногда обозначают Cd (drag coefficient — коэффициент сопротивления). Идеальной обтекаемостью обладает каплевидное тело, Сх которого равен 0,04. При движении оно плавно рассекает воздушные потоки, которые затем беспрепятственно, без разрывов, смыкаются в его «хвосте».

Иначе ведут себя воздушные массы при движении автомобиля. Здесь сопротивление воздуха складывается из трех составляющих:

  • внутреннего сопротивления при прохождении воздуха через подкапотное пространство и салон,
  • сопротивления трения воздушных потоков о внешние поверхности кузова и
  • сопротивления формы.

Третья составляющая оказывает наибольшее влияние на аэродинамику автомобиля. Двигаясь, автомобиль сжимает находящиеся перед ним воздушные массы, создавая область повышенного давления. Потоки воздуха обтекают кузов, а там, где он заканчивается, происходит отрыв воздушного потока, создаются завихрения и область пониженного давления. Таким образом, область высокого давления спереди мешает автомобилю двигаться вперед, а область пониженного давления сзади «засасывает» его назад. Сила завихрений и величина области пониженного давления определяется формой задней части кузова.

Обтекание кузова автомобиляПередняя часть и боковые поверхности автомобиля особых хлопот конструкторам в плане аэродинамики не доставляют. Здесь главное — избегать резких переходов и выступов, предотвращая тем самым отрыв воздушного потока от поверхности кузова.

А вот с задней частью кузова все гораздо сложнее. Как нетрудно догадаться, наименее аэродинамичными являются универсалы – их форма меньше всего напоминает идеальную «каплю». За их обширным «задком» образуется внушительная зона разряжения, которая не только снижает Сх, но и «засасывает» пыль и грязь, оседающую на заднем стекле. Немного уменьшить ее вредное воздействие можно с помощью установки дефлектора на верху пятой двери. Он направляет часть воздушного потока вниз, снижая разряжение и уменьшая загрязнение.

Не все просто и с хэтчбеками, хотя, на первый взгляд, их форма кажется наиболее обтекаемой. Впечатление обманчиво – яркий пример непредсказуемости аэродинамики. Сх хэтчбеков зависит от угла наклона задней части. При большом угле наклона (а таких моделей большинство) процесс обтекания практически не отличается от универсалов – воздушный поток отрывается от верхней кромки крыши и создает значительную зону разряжения.

С уменьшением угла наклона до 30-35 градусов точка отрыва потока перемещается на нижнюю кромку задней части. Казалось бы, зона разряжения и, соответственно, Сх должны уменьшиться. Но, как это на первый взгляд ни парадоксально, происходит все наоборот. Дело в том, что в этом случае воздушные потоки с боков кузова, попадая на наклонную поверхность, образуют кромочные вихри, которые, закручиваясь по спирали, создают за автомобилем еще большую зону разряжения. Борются с этим явлением с помощью спойлера, устанавливаемого на кромке крыши. При этом точка отрыва потока перемещается с нижней кромки задней части на верхнюю, что предотвращает образование кромочных вихрей и несколько улучшает общую аэродинамику.

А вот если уменьшить наклон «задка» до 20-23 градусов, воздушный поток с крыши почти идеально обтекает автомобиль, отрываясь от нижней кромки. При этом кромочные вихри уже не образуются, и зона разряжения получается минимальной. Но такие автомобили теряют в практичности и поэтому среди серийных моделей их совсем немного.

Задний спойлер Задний спойлер Аэродинамика хэтчбека

Наилучшие показатели обтекаемости демонстрируют автомобили со ступенчатой формой задней части – седаны и купе. Объяснение простое – сорвавшийся с крыши поток воздуха тут же попадает на крышку багажника, где нормализуется и затем окончательно срывается с его кромки. Боковые потоки тоже попадают на багажник, который не дает возникать вредным вихрям за автомобилем. Поэтому чем выше и длиннее крышка багажника, тем лучше аэродинамические показатели. На больших седанах и купе иногда даже удается достичь безотрывного обтекания кузова. Небольшое сужение задней части также помогает снизить Сх. Кромку багажника делают острой или в виде небольшого выступа – это обеспечивает отрыв воздушного потока без завихрений. В результате область разряжения за автомобилем получается небольшой.

Днище автомобиля также оказывает влияние на его аэродинамику. Выступающие детали подвески и выхлопной системы увеличивают сопротивление. Для его уменьшения стараются максимально сгладить днище или прикрыть щитками все, что «торчит» ниже бампера. Иногда устанавливают небольшой передний спойлер. Спойлер снижает поток воздуха под автомобилем. Но тут важно знать меру. Большой спойлер существенно увеличит сопротивление, но зато автомобиль будет лучше «прижиматься» к дороге. Но об этом – в следующем разделе.

Прижимная сила

Подъемная силаПри движении автомобиля поток воздуха под его днищем идет по прямой, а верхняя часть потока огибает кузов, то есть, проходит больший путь. Поэтому скорость верхнего потока выше, чем нижнего. А согласно законам физики, чем выше скорость воздуха, тем ниже давление. Следовательно, под днищем создается область повышенного давления, а сверху – пониженного. Таким образом создается подъемная сила. И хотя ее величина невелика, неприятность состоит в том, что она неравномерно распределяется по осям. Если переднюю ось подгружает поток, давящий на капот и лобовое стекло, то заднюю дополнительно разгружает зона разряжения, образующаяся за автомобилем. Поэтому с ростом скорости снижается устойчивость и автомобиль становится склонен к заносу.

Каких-либо специальных мер для борьбы с этим явлением конструкторам обычных серийных автомобилей выдумывать не приходится, так как то, что делается для улучшения обтекаемости, одновременно увеличивает прижимную силу. Например, оптимизация задней части уменьшает зону разряжения за автомобилем, а значит и снижает подъемную силу. Выравнивание днища не только уменьшает сопротивление движению воздуха, но и повышает скорость потока и, следовательно, снижает давление под автомобилем. А это, в свою очередь, приводит к уменьшению подъемной силы. Точно так же две задачи выполняет и задний спойлер. Он не только уменьшает вихреобразование, улучшая Сх, но и одновременно прижимает автомобиль к дороге за счет отталкивающегося от него потока воздуха. Иногда задний спойлер предназначают исключительно для увеличения прижимной силы. В этом случае он имеет большие размеры и наклон или делается выдвижным, вступая в работу только на высоких скоростях.

Аэродинамические элементы спортивного автомобиляДля спортивных и гоночных моделей описанные меры будут, естественно, малоэффективны. Чтобы удержать их на дороге, нужно создать большую прижимную силу. Для этого применяются большой передний спойлер, обвесы порогов и антикрылья. А вот установленные на серийных автомобилях, эти элементы будут играть только лишь декоративную роль, теша самолюбие владельца. Никакой практической выгоды они не дадут, а наоборот, увеличат сопротивление движению. Многие автолюбители, кстати, путают спойлер с антикрылом, хотя различить их довольно просто. Спойлер всегда прижат к кузову, составляя с ним единое целое. Антикрыло же устанавливается на некотором расстоянии от кузова.

Практическая аэродинамика

Выполнение нескольких несложных правил позволит вам получить экономию из воздуха, снизив расход топлива. Однако эти советы будут полезны только тем, кто часто и много ездит по трассе.

При движении значительная часть мощности двигателя тратится на преодоление сопротивления воздуха. Чем выше скорость, тем выше и сопротивление (а значит и расход топлива). Поэтому если вы снизите скорость даже на 10 км/ч, сэкономите до 1 л на 100 км. При этом потеря времени будет несущественной. Впрочем, эта истина известна большинству водителей. А вот другие «аэродинамические» тонкости известны далеко не всем.

Расход топлива зависит от коэффициента лобового сопротивления и площади поперечного сечения автомобиля. Если вы думаете, что эти параметры заложены на заводе, и автовладельцу изменить их не под силу, то вы ошибаетесь! Изменить их совсем несложно, причем можно добиться как положительного, так и отрицательного эффекта.

Что увеличивает расход? Непомерно «съедает» топливо груз на крыше. И даже бокс обтекаемой формы будет отнимать не менее литра на сотню. Нерационально сжигают топливо открытые во время движения окна и люк. Если перевозите длинномерный груз с приоткрытым багажником — тоже получите перерасход. Различные декоративные элементы типа обтекателя на капоте («мухобойки»), «кенгурятника», антикрыла и других элементов доморощенного тюнинга хоть и принесут эстетическое наслаждение, но заставят вас дополнительно раскошелиться. Загляните под днище — за все, что провисает и выглядывает ниже линии порога, придется доплачивать. Даже такая мелочь, как отсутствие пластиковых колпаков на стальных дисках, повышает расход. Каждый перечисленный фактор или деталь по отдельности увеличивают расход не на много — от 50 до 500 г на 100 км. Но если все суммировать, «набежит» опять же около литра на сотню. Эти расчеты справедливы для малолитражных автомобилей при скорости 90 км/ч. Владельцы больших автомобилей и любители блльших скоростей делайте поправку в сторону увеличения расхода.

Если выполнить все вышеперечисленные условия, мы сможем избежать излишних трат. А можно ли еще снизить потери? Можно! Но это потребует проведения небольшого внешнего тюнинга (речь идет, конечно, о профессионально выполненных элементах). Передний аэродинамический обвес не дает воздушному потоку «врываться» под днище автомобиля, накладки порогов прикрывают выступающую часть колес, спойлер препятствует образованию завихрений за «кормой» автомобиля. Хотя спойлер, как правило, уже включен в конструкцию кузова современного автомобиля.

Так что получать экономию из воздуха – вполне реально.

Совет Экономия при 90 км\ч Экономия при 120км\ч
Демонтировать верхний бокс 0,98 1,61
Демонтировать крепления для лыж 0,61 1,01
Закрыть окна 0,27 0,44
Установка переднего обтекателя 0,24 0,40
Закрыть люк в крыше 0,05 0,08
Установить колпаки на штампованные колеса 0,05 0,08

avtonov.info

Влияние аэродинамики на форму автомобилей

Главная / Multiphysics-online / Аэродинамика автомобилей

Влияние аэродинамики на форму автомобилей

Просмотров: 302 Дата публикации: 05.12.2017

Прежде, чем начать разговор о влиянии аэродинамики, давайте сравним два гоночных автомобиля разной эпохи. Можно видеть существенное различие аэродинамических форм этих двух гоночных автомобилей. Прежде всего стало уделяться существенно большее внимание аэродинамике. Хотя и в начале 20 века уменьшение аэродинамического сопротивления было одной из основных задач.

Обтекаемость аэродинамических форм имеет существенное значение. Во-первых, мы хотим, чтобы автомобиль двигался быстрее, преодолевая сопротивление воздуха, ведь чем меньше сопротивление, тем большую скорость может развить автомобиль. Во-вторых, на современных гоночных автомобилях большое внимание уделяется созданию прижимной силы, и именно эти требования вносят наибольший вклад в ту разницу, которую мы видим между этими двумя автомобилями. Логично задать вопрос, зачем нужна прижимная сила? Но прежде чем ответить на данный вопрос, давайте убедимся, что аэродинамические силы, создаваемые при обтекании воздухом, значительны по величине и даже могут поднимать большие самолеты весом в несколько сотен тонн (например, взлетная масса пассажирского самолета Boeing 747-200 достигает приблизительно 370 тонн), а мощные двигатели создают только лишь тягу для того, чтобы “проталкивать” самолет сквозь воздух.

На первый взгляд может показаться, что силы, создаваемые при обтекании воздухом, незначительны, особенно в диапазоне скоростей, характерных для автомобилей. Однако, стоит лишь высунуть руку из окна движущегося автомобиля, и сразу же можно ощутить значительное сопротивление. Также все мы знаем о сокрушительном воздействии торнадо.

Для того, чтобы понять как создаются аэродинамические силы, рассмотрим аэродинамический профиль крыла самолета. Крыло движется слева направо. При обтекании воздухом поток на верхней поверхности профиля разгоняется, создавая разрежение. За счет разницы давлений на верхней и нижней поверхностях крыла создается подъемная сила, которая поднимает летающие аппараты, птицы и т.д.

Но, к сожалению, за все приходится платить, при обтекании потоком воздуха создается не только подъемная сила, но и сопротивление. Сопротивление обычно намного меньше по сравнению с подъемной силой, но все очень сильно зависит от профиля крыла самолета, крутки, шероховатости поверхности и прочих параметров. Конечно, любое улучшение, направленное на уменьшение сопротивления, приводит к экономии топлива, поэтому это особенно важно для пассажирских самолетов.

Влияние проектирования аэродинамических поверхностей можно продемонстрировать на одном простом примере. Возьмем поперечные сечения цилиндра и крыла самолета. Цилиндр имеет намного меньшие размеры по сравнению с профилем, но они имеют одинаковое сопротивление.

Кроме силы сопротивления и подъемной силы также на автомобиль может действовать боковая сила. Боковая сила также достаточно важна, но при относительно небольших порывах ветра она незначительна. Люди, которые имеют большой опыт езды при очень больших скоростях, замечают, что при таких скоростях необходимо больше внимания для того, что поддерживать движение автомобиля по прямой. Данная неустойчивость обычно связана с созданием подъемной силы, которая, как правило, больше на задней части автомобиля.

Для пассажирских или даже гоночных автомобилей было бы логичным уменьшение сопротивления и создание прижимной силы, но, как оказывается, для гоночных автомобилей уменьшение сопротивления вторично. Именно создание прижимной силы за счет аэродинамических поверхностей (например, антикрыльев) чрезвычайно важно и приводит к основным улучшениям для повышения эффективности гоночных автомобилей. Аэродинамическая прижимная сила способствует более быстрому прохождению в многочисленных поворотах за счет лучшего сцепления шин с дорогой.

numex.ru

Аэродинамическое сопротивление автомобиля

В процессе проектирования и создания конструкторами очень тщательно прорабатывается аэродинамика автомобиля, поскольку она оказывает значительное влияние на технические показатели модели.

При движении автомобиля большая часть мощности силовой установки уходит на преодоление сопротивления, создаваемого воздухом. И правильно созданная аэродинамика автомобиля позволяет уменьшить это сопротивление, а значит на борьбу с противодействием находящего воздушного потока потребуется затратить меньше мощности, и соответственно – топлива.

Измерение аэродинамики автомобиля проводится для изучения сил, создаваемых воздушным потоком и воздействующих на транспортное средство. И таких сил несколько – подъемные и боковые, а также лобовое сопротивление.

Лобовое сопротивление и коэффициент Сх

По большей части все работы с кузовом авто направлены на преодоление лобового сопротивления, поскольку именно эта сила самая значительная.

лобовое сопротивление воздуха

Движение потоков воздуха

За основу при расчетах берется сила сопротивления воздуха. Для вычисления результата используются такие данные как плотность воздуха, площадь поперечной проекции авто, коэффициент аэродинамического сопротивления (Сх)  — это важнейший показатель в аэродинамике автомобиля. При этом на силу сопротивления в значительной мере влияет также скорость движения. Так, увеличение скорости вдвое будет сопровождаться повышением сопротивлением в 4 раза. Скорость один из мощных факторов увеличения расхода.

Например, для хорошо обтекаемого авто с площадью проекции 2 м2  и коэффициентом 0,3 при движении на скорости 60 км/ч для преодоления сопротивления воздуха необходимо 2,4 л.с., а при скорости 120 км/ч уже 19,1 л.с. Разница расхода топлива при таких условиях достигает 30% на 100 км.

Если вам, в данный момент, требуется максимальная экономия топлива, необходимо придерживаться постоянной скорости около 60 км/ч. В этом режиме движения расход будет минимальным даже у авто с большим Cx.

Рассмотрим все по-простому. У воздуха есть своя плотность, причем немалая. При движении автомобилю приходится проходить через имеющиеся воздушные массы, при этом создается поток, который обтекает кузов. И чем легче авто будет «резать» воздушную массу, тем меньше он затратит на это энергии.

Но не все так просто. Во время движения перед авто создается область увеличенного давления (машина сжимает воздушную массу), то есть спереди образуется такой себе невидимый барьер, осложняющий «разрезание» воздушной массы.

Также после обтекания кузова происходит отрыв воздушного потока от поверхности, что становиться причиной появления завихрений и разрежения за авто. В сочетании с повышенным давлением возникающее разрежение еще больше увеличивает сопротивление.

Поскольку повлиять на плотность воздуха невозможно, то конструкторам остается только вносить коррективы в две другие расчетные составляющие – площадь авто и коэффициент аэродинамического сопротивления.

Но уменьшить проекцию авто не представляется особо возможным без ущерба для полезных пространств кузова (просто невозможно сделать авто меньше, чем он есть), поэтому остается только изменение коэффициента Сх.

Этот коэффициент устанавливается экспериментальным путем (в аэродинамической трубе) и характеризует он соотношение лобового сопротивления к скоростному напору и площади поперечного сечения кузова. Величина его безразмерная.

аэродинамическая труба

Аэродинамическая труба

Наименьший коэффициент аэродинамического сопротивления имеет каплевидное тело. При движении в воздушной массе такое тело плавно перед собой разводит поток, не создавая области повышенного давления, а имеющийся «хвост» позволяет за собой сомкнуть поток без обрывов и завихрений, то есть разрежение тоже отсутствует. Получается, что воздух просто обтекает тело, создавая минимальное сопротивление. Для такого тела коэффициент Сх составляет всего 0,05.

Конструкторам, работая с аэродинамикой автомобиля добиться, таких показателей пока не удается. И все потому, что при движении сопротивление создается несколькими факторами:

  • Формой кузова;
  • Трением потока о поверхности при обтекании;
  • Попаданием потока в подкапотное пространство и салон.

Поэтому для современных авто коэффициент аэродинамического сопротивления считается отличным, если его значение ниже 0,3. К примеру, у Peugeot 308 коэффициент составляет 0,29, у Audi A2 он равен 0,25, а у Toyota Prius – 0,26. Но стоит отметить, что это расчетные показатели в идеальных условиях. На практике же во время движения на авто воздействуют множество разнообразных факторов, которые негативным образом сказываются на сопротивлении кузова.

Примечательно, что на коэффициент оказывает наибольшее влияние не передок авто, а его задняя часть. И виной этому становится создание разрежения и завихрений в результате отрыва потока от кузова. Поэтому конструкторы по большей части занимаются приданием необходимой формы именно задней части.

Фольксваген XL1

Коэффициент сопротивления Volkswagen XL1 составляет всего 0,19

Снизить коэффициент Сх позволяет также уменьшение количества выступающих частей, причем везде на авто (бока, крыша, днище, передок), а тем элементам, которые не удается убрать с поверхности придается максимально возможная обтекаемая форма.

Подъемная и прижимная сила

В результате неравномерного обтекания потоком воздуха автомобиля с разных сторон возникает разница в скорости его движения.

лобовое сопротивление авто

Действующие подъемная и прижимная силы

Автомобиль движется и рассекает поток воздуха, при этом часть этого потока уходит под авто и проходит под днищем, то есть движется практически по прямой. А вот верхней части потока приходится повторять форму кузова, и ей приходится проходить большее расстояние. Из-за этого возникает разница в скорости воздуха – верхняя часть движется быстрее нижней, проходящей под авто. А поскольку увеличение скорости сопровождается снижением давления, то под днищем образуется зона повышенного давления, которая приподнимает машину.

Проблем добавляет и лобовое сопротивление. Область повышенного давления воздушной массы перед машиной прижимает передок к дороге, в то время как разрежение и завихрения позади наоборот – способствуют приподнятию кузова. Подъемная сила, как и лобовое сопротивление, возрастает при увеличении скорости движения.

Негативным фактором от воздействия такой силы является ухудшение устойчивости авто при увеличении скорости и повышение вероятности ухода в занос.

Но эта сила может оказывать и положительное действие. При внесении корректив в конструкцию авто возможно преобразование подъемной силы в прижимную, которая будет обеспечивать лучшее сцепление с дорогой, устойчивость авто, его управляемость на высоких скоростях.

При этом для получения прижимной силы не требуется каких-либо отдельных решений. Все разработки, направленные на снижение коэффициента Сх также сказываются и на прижиме. К примеру, оптимизация формы задней части приводит к уменьшению завихрений и разрежения, из-за чего подъемная сила тоже снижается, а прижимная — повышается. Установка заднего спойлера действует таким же образом.

сопротивление воздуха

Уменьшение завихрений при установке спойлера

Боковые же силы при установлении аэродинамики автомобиля, особо в расчет не берутся, в силу того, что они не постоянны, а также значительного влияния на показатели авто не оказывают.

Но это все теория аэродинамики автомобиля. На практике все можно пояснить одним предложением — чем хуже аэродинамика, тем выше расход топлива.

Что ещё влияет на аэродинамику?

Конечно, конструкторы стараются по максимуму снизить сопротивление авто при движении и повысить прижимную силу. Но особенности эксплуатации авто и свой взгляд автовладельцев на внешние особенности машины вносят свои коррективы, причем в некоторых случаях – значительны.

таблица необходимой мощности в зависимости от скорости автомобиля

Аэродинамическое сопротивление разных автомобилей в зависимости от скорости

К примеру, установка багажника на крышу, даже с аэродинамической формой увеличивает поперечную проекцию авто и сильно влияет на обтекаемость, это сразу сказывается на потреблении топлива.

Также расход повышается от езды с открытыми окнами и люком, использование защитных и декоративных обвесов, перевозка негабаритных грузов, выступающих за авто, нарушение положения конструктивных элементов, расположенных под днищем, повышение клиренса.

Но автовладелец также может и внести коррективы, которые положительно повлияют на аэродинамику автомобиля. К ним относится использование аэродинамических обвесов, установка спойлера, уменьшение клиренса.

autoleek.ru

Аэродинамика автомобиля

В соответствии с законами физики движение любого механизма является результатом взаимодействия нескольких сил. Причем при различных внешних условиях, вклад тех или иных воздействий будет отличаться. В применении к ТС часто приходится пользоваться таким понятием как аэродинамика автомобиля. Что это такое – ясно интуитивно, а вот коснуться некоторых подробностей будет, как минимум, просто интересно.

Несколько слов о самом движении

Хотим мы этого или нет, но машине при движении требуется преодолевать противодействие внешней среды. На нее действуют силы тяжести, инерции, сцепления с дорожным полотном, трения сопротивления качения, но для нас сейчас более интересны те из них, которые имеют отношение к аэродинамике. Для автомобиля с этой точки зрения актуальны:

  • сила сопротивления среды;
  • подъемная сила, образованная воздушным потоком;
  • прижимная сила.

Именно их соотношение (равнодействующая) определяет устойчивость, маневренность и экономичность автомобиля на дороге. Величина отмеченных сил во многом зависит от параметров движения. Сопротивление, оказываемое встречным потоком, определяется квадратом скорости и соответствующими коэффициентами. Но характер поведения других сил, обусловленных аэродинамикой, более сложный.аэродинамика автомобиля

При разгоне и движении ТС, препятствующий этому воздух делится на несколько потоков. Один из них обтекает машину сверху и прижимает ее к дороге. Другой проходит под днищем, по закону Бернулли он является более плотным и приподнимает машину, а остальные обтекают ее с боков.

Это самое краткое и минимальное описание сил аэродинамики. Как пример можно привести их распределение, действующих на автомобиль при определенной скорости в зависимости от формы машины и наличия внешних элементов.подъемная сила

Простое сравнение результатов показывает, что даже минимальное улучшение, такое как изменение формы кузова и использование внешних элементов (спойлеров), приводит к тому, что аэродинамика автомобиля может поменяться самым кардинальным образом. Но относиться к этому надо достаточно осторожно, и вряд ли целесообразно экспериментировать самому.

Немного теории

Коэффициент аэродинамического сопротивления автомобиля указывается в величине Cx, обычно она меньше 1. Чем он будет меньше, тем меньше мощностей он будет затрачивать для движения. Так показатель Cx у AUDI A8 — 0.37, Lexus LS 460 — 0.26. Весьма странным может показаться тот факт, что у спорткаров этот показатель значительно выше (Porsche 911 Turbo 997 — 0.31, Bugatti Veyron — 0.42). На самом же деле все довольно просто. Мощные двигатели требуют охлаждения, в том числе и воздушными потоками. Добиться этого можно увеличив площадь радиатора, а значит и поперечное сечение машины.

Улучшение аэродинамики автомобиля

Машина движется в воздушной среде, преодолевая ее сопротивление. Оно во многом определяется формой автомобиля, наличием и конструкцией внешних устройств. Для первых представителей авто, например «жестянка Лиззи», это не имело никакого значения, скорости движения были невелики, и время думать о том, что надо улучшать аэродинамику автомобиля, еще не пришло.жестянка лиззи

Однако по мере взросления автопрома росли скорости и мощности моторов, так что для дальнейшего развития и совершенствования автомобиля, вопросы, затрагивающие улучшение его аэродинамики, становились все более и более актуальными. Главные цели улучшения аэродинамических показателей — увеличение скоростей и экономия топлива. В таблице показано как меняется сопротивление воздуха в зависимости от скорости.соотношение скорости и мощности

Первыми с этим столкнулись спортивные машины, именно там стали появляться обтекаемые формы, позволившие снизить сопротивление внешней среды, благодаря чему повысились скорости движения. Надо сразу отметить, что в тот момент именно скоростные характеристики стояли на первом месте, об экономичности речи еще не шло.

Но со временем именно топливная экономичность, вопросы безопасности и управляемости стали решающими. За счет оптимальных форм кузова, а также обтекаемости внешних элементов отделки и дизайна (фар, ручек, решеток и т.д.) удалось поднять скорость движения и повысить топливную эффективность автомобиля.

Как пример – в таблице приведены некоторые данные о влиянии внешних элементов на расход топлива.как улучшить аэродинамику

Так что со временем улучшение эксплуатационных характеристик автомобиля, стало просто невозможно без учета влияния на них его аэродинамики. И достигается это кропотливым трудом многочисленных специалистов на специальных стендах.

Аэродинамика автомобиля имеет отношение практически ко всему спектру вопросов существования современного ТС. Дело не только в наличии внешних атрибутов, таких как спойлеры, колесные диски или зеркала специальной формы. Во многих случаях аэродинамика играет едва ли не решающую роль в управляемости и безопасности движения. И собираясь улучшать аэродинамику автомобиля самостоятельно, стоит понимать, что этим занимался производитель еще на этапе производства.

znanieavto.ru