Что такое впрыск топлива. Распределенный и непосредственный впрыск топлива. Что такое непосредственный впрыск топлива


Системы непосредственного впрыска топлива.

    Наиболее современными системами управления двигателем являются системы с непосредственным впрыскиванием топлива. Здесь топливная форсунка впрыскивает топливо непосредственно в камеру сгорания, то есть, во внутренний объём цилиндра. Благодаря этому, при работе двигателя с низкой нагрузкой (холостой ход, равномерное движение автомобиля с небольшой скоростью...) удалось достичь приготовления внутри цилиндра топливовоздушной смеси с неоднородным соотношением воздух-топливо. Вблизи электродов свечи зажигания образуется нормальная или немного обогащённая смесь, за счёт чего происходит устойчивое воспламенение этой смеси от искрового разряда между электродами свечи зажигания. В остальном объёме цилиндра образуются бедные и сверхбедные смеси, которые сгорают от пламени горения нормальной по составу смеси вблизи электродов свечи зажигания. За счёт послойного приготовления топливовоздушной смеси (состав смеси в объёме камеры сгорания неоднороден), усреднённый состав приготовляемой и сжигаемой таким образом топливовоздушной смеси оказывается сверхбедным - соотношение воздух-топливо при работе двигателя в таком режиме может достигать значений 30:1...40:1. Для сравнения, на бензиновом двигателе с подачей топлива во впускной коллектор и оборудованном специальными завихрителями потока воздуха (для создания послойной смеси в камере сгорания) не удаётся достичь обеднения топливовоздушной смеси с соотношением воздух-топливо более 25:1. А, как известно, обеднение топливовоздушной смеси позволяет заметно снизить количество расходуемого двигателем топлива.

    Системы управления двигателем с непосредственным впрыскиванием топлива, да и сами двигатели, обслуживаемые подобными системами, имеют ряд отличий от обычных систем с точечным впрыскиванием топлива. Это: вертикальные каналы ввода потока воздуха в цилиндры, поршни с закругленной выборкой для направления топливной смеси в сторону свечи зажигания, вихревые инжекторы высокого давления, топливный насос высокого давления. Кроме того, при работе двигателя на сверхбедных смесях, впрыскивание топлива в камеру сгорания происходит в конце такта сжатия. Из-за высокого давления в камере сгорания в момент впрыска топлива, а так же для обеспечения направленного перемещения впрыснутого топлива к свече зажигания, давление топлива в топливной рейке здесь существенно увеличено, соответственно изменена и конструкция топливной форсунки. С целью повышения давления в топливной рейке, кроме электрического топливного насоса, размещённого внутри бака, здесь дополнительно применён механический топливный насос высокого давления, приводимый от распределительного вала двигателя. Механический топливный насос высокого давления обеспечивает поддержание давления в топливной рейке на уровне нескольких десятков Bar.

    Для обеспечения правильного послойного образования топливовоздушной смеси, движение воздушного потока внутри цилиндра было оптимизировано за счёт изменения конструкции двигателя - изменены форма и направление впускного воздушного канала для создания в камере сгорания вертикально направленных воздушных потоков. Так же здесь применена специальная форма днища поршня. За счёт изменённой формы днища поршня, струя впрыскиваемого форсункой топлива "отражается" от наклонного углубления в днище поршня и направляется к свече зажигания, где образуется область с достаточно богатым содержанием топлива.

    В связи с повышением давления топлива в топливной рейке, потребовалось значительно сократить длительность открытия топливной форсунки, измеряемое здесь в единицах десятых долей милли Секунды. Для уменьшения инерционности топливных форсунок, величина управляющего форсунками напряжения была значительно увеличена и достигает нескольких десятков Вольт. Для управления топливными форсунками многих систем непосредственного впрыска топлива применяется специальный модуль, преобразующий низковольтные импульсы от блока управления двигателем в высоковольтные импульсы для управления топливными форсунками.

впрыск топлива инжекторных двигателей

Осциллограммы напряжений сигналов управления топливной форсункой системы непосредственного впрыска топлива.

  1. Осциллограмма напряжения на одном из выводов топливной форсунки системы непосредственного впрыска топлива.
  2. Осциллограмма напряжения на втором из выводов топливной форсунки системы непосредственного впрыска топлива.
  3. Осциллограмма напряжения, воздействующего на обмотку топливной форсунки системы непосредственного впрыска топлива

    Следует отметить, что при работе двигателя на холостом ходу, для поддержаниянеобходимой температуры нейтрализатора выхлопных газов приготовление сверхбеднойтопливовоздушной смеси периодически чередуется с приготовлением обычныйоднородной смеси (послойное смесеобразование чередуется с гомогеннымсмесеобразованием). При гомогенном смесеобразовании впрыск топлива в камеру сгорания происходит не во время такта сжатия, а на такте впуска. Переключения междупослойным и гомогенным смесеобразованием заметны по незначительному изменению частоты вращения двигателя на холостом ходу.    

    На определенных режимах работы двигателя возможен комбинированный режим приготовления смеси, когда топливо впрыскивается форсунками на такте впуска и дополнительно в конце такта сжатия.    

Из-за низкого качества топлива, повышается степень износа деталей некоторых узлов системы непосредственного впрыскивания топлива. Высокое содержание серы и нерегламентированных присадок в бензине фактически сводит на нет экономические, экологические и мощностные показатели данных двигателей. Поэтому, не многие производители автомобилей одобряют эксплуатацию таких двигателей в странах СНГ.

auto-master.su

Непосредственный впрыск.

Непосредственный впрыск GDI - революция на границе тысячелетий.      Уже более 100 лет на автомобили устанавливают бензиновый и дизельный ДВС. Мы давно к ним приспособились, и хорошо зная их достоинства  и недостатки, применяем тот или иной по обстоятельствам.     Бензиновый двигатель легко пускается, разгоняется быстро и до высоких оборотов, имеет большую литровую мощность и дешевле стоит. Но любит "покушать", причем недешево. Поэтому мы его чаще видим на легковых и небольших грузовых автомобилях.     Дизель и сам по себе стоит дороже, и дороже в обслуживании, не столь быстроходен, выдает меньшую мощность с литра рабочего объема, имеет повышенный уровень шума и хуже пускается. Зато, и это главное, потребляет куда меньше топлива, причем более дешевого. Понятно, что практически весь тяжелый и комерческий транспорт "ездит" на дизелях.     Но лишних денег не бывает, и покупатели легковых автомобилей, причем не только в Европе, все чаще задумываются о том, какой двигатель им предпочесть. И довольно часто выбирают дизель. Хотя еще лучше , если бы два в одном... И быстрый , и тихий, и с легким пуском, и чтобы топливо зимой не застывало, да и мощность повыше не помешает, но вот только бы "ел" поменьше.      Но чудес не бывает. Есть теория двигателей...

Простыми словами. Чтобы топливо сгорало, нужен воздух. Но надо смешать с воздухом столько топлива, сколько нужно для полного сгорания. Такое количество воздуха называется стехиометрическим, и оно, конечно же , давно известно. Например, для бензина оптимальный состав топливной смеси выражается соотношением 14.7 : 1 то есть на 1 грамм бензина нужно 14.7 грамма воздуха. Смесь в которой воздуха больше, чем нужно, называют "бедной", а там, в которой воздуха меньше, чем нужно, называется "богатой". Слишком бедную смесь не всегда удается поджечь, при работе на богатой смеси несгоревшее топливо бесполезно "вылетает" в трубу и растет выброс угарного газа.     Но воздух нужен не только для сгорания . Чем выше давление  в цилиндре перед воспламенением смеси, тем больше отдача  двигателя. И нам очень выгодно, чтобы больше воздуха попало в цилиндр на такте впуска; тем больше потом будет давление.     А теперь разберемся, почему дизель экономичнее.     Вспомним, как работает двигатель внутреннего сгорания. У бензинового двигателя на такте впуска смесь воздуха и топлива поступает в цилиндр, затем он сжимается и поджигается искрой. У дизеля на такте впуска в цилиндр поступает только воздух, который сжимается поршнем под большим давлением и при этом еще и нагревается. В конце сжатия в цилиндр впрыскивается топливо, которое при высоких давлении и температуре самовоспламеняется. Давление в цилиндре дизеля намного выше, чем в цилиндре бензинового двигателя. Для современного безнаддувного дизеля вполне нормальна степень сжатия 20, а у серийных бензиновых, даже самых "зажатых", едва достигает 11. А выше давление в цилиндре, выше и эффективность. Поднять выше степень сжатия в бензиновом моторе мешают такие явления как детонация и калильное зажигание.     Детонация - очень быстрое сгорание топлива в точках удаленных от свечи, сопровождается резким местным перегревом и перегрузкой деталей двигателя. Внешний признак детонации - стук, мы слышим , когда например, на "Жигулях" пытаемся резко разогнаться после заправки низкооктановым бензином.      Калильное зажигание - преждевременное, (до появления искры) воспламенение смеси от перегретых деталей камеры сгорания (например от того же электрода свечи). Длительная работа с детонацией и калильным зажиганием недопустима для двигателя и ведет к его разрушению.     Детонация и калильное зажигание провоцируют высокая температура и высокое давление. Во избежание детонации моторы с высокой степенью сжатия "кормят" высокооктановым бензином (98). но выше степени 11 и этого "не хватает".     Теперь посмотрим, что происходит при малых нагрузках. Вот мы убавили газ и поехали медленнее. Что это значит для бензинового мотора? Когда мы отпускаем педаль акселератора, на впуске перекрывается дроссельная заслонка, а это значит, что мы уменьшаем не только количество подаваемого топлива, но и количество воздуха. Меньше воздуха в цилиндре  - меньше давления в конце сжатия.      А как же бензиновый двигатель с впрыском топлива? Ведь там то можно уменьшить подачу топлива, не уменьшая количество воздуха. Можно, но до определенного предела. Потому, что слишком бедная смесь не будет поджигаться искрой, и чтобы смесь не обеднилась слишком сильно, дроссель все же придется прикрыть, и давление снизится. Меньше давление в цилиндре - меньше момент на выходе.     А что значит отпустить педаль у дизеля? Это значит, что в цилиндр будет подаваться меньше топлива. Но количество всасываемого воздуха останется прежним, и давление в конце такта впуска не изменится. Да, смесь в цилиндре станет бедной , но дизель благополучно работает и на бедной смеси, ведь там другой принцип воспламенения и другое топливо.. И дизель остается эффективным и при малых нагрузках.     Вот, мы и дошли до главного, если мы хотим сделать бензиновый двигатель экономичным, и при этом более мощным, то мы должны избавить его от детонации и научить питаться бедной смесью.

На некалорийной пище. Итак, проблема в том, что искра упорно не желает воспламенять бензовоздушную смесь более бедную, чем 17:1. Но ведь можно заполнить чилиндр более бедной смесью, а непосредственно к свече подавать более богатую,которая загорится. В форкамерном двигателе эта идея и была заложена.       Реальных же результатов удалось достичь на моторах с распределенным впрыском топлива: здесь добиваются устойчивой работы на смеси с соотношением 22:1, но сильнее обеднить смесь все равно не удается. Ведь в случае обычного распределенного впрыска смесеобразование внешнее - форсунка впрыскивает бензин во впускной трубопровод. И доставить более богатую часть потока смеси к свече мы можем только за счет направления потока методами аэродинамики, например, определенным образом его завихряя. Вот если бы топливо впрыскивалась непосредственно в цилиндр....     Бензиновые двигатели с непосредственным впрыском появились довольно давно и применялись в авиации уже в годы Второй Мировой войны. Двигатели для автомобилей тоже разрабатывались, по крайней мере в нашей стране их испытывали уже в конце 40-х. Однако еще долгое время не удавалось справиться с серьезными недостатками непосредственного впрыска, в частности - "дизельным" дымлением на мощностных режимах. Да и мотор получался довольно дорогим, а потому экономически невыгодным. И непосредственным впрыском практически перестали заниматься.     Но не японцы. На Mitsubishi раньше других осознали, какую пользу может принести непосредственный впрыск в условиях ожесточения экологических норм, а бензин в Японии дешевым никогда не был. 15 лет усилий увенчались успехом, первые доведенные до готовности моторы с непосредственным впрыском бензина были представлены публике на Фракфуртском и Токийском автосалонах осенью 1995 года. Их обозначили GDI (Gasoline Direct Injection - непосредственный впрыск бензина). Спустя год на японском рынке появился серийный Mitsubishi Galant 1.8 GDI и наконец, в 1997 году европейцам была предложена Carusma с двигателем 1.8 GDI.

Как устроен GDI.   Действительно, этот двигатель напоминает по конструкции  обычный бензиновый и дизель. В каждом цилиндре присутствует и свеча зажигания и форсунка, а топливо подается насосом высокого давления под давлением 5 МПа (50 атм). Форсунка обеспечивает два режима впрыска топлива.     Обратим внимание на следующие особенности . Впускной трубопровод подходит к цилиндру сверху. Это позволяет получить падающий поток воздуха, который после контакта с поршнем разворачивается и устремляется вверх, закручиваясь по часовой стрелке ( такая организация воздушного потока позволяет достичь оптимальныой концентрации топлива непосредственно около свечи). По почти прямому трубопроводу поток движется с очень высокой скоростью, и даже когда поршень достиг нижней мертвой точки, еще некоторое количество воздуха входит по инерции.     Поршень необычный , сверху есть выемка сферической формы. Форма поршня обеспечивает  три важных функции. Во-первых, позволяет задать воздушному потоку нужное направление движения. Во-вторых, направляет впрыскиваемое топливо непосредственно к свече зажигания, что важно при работе  на предельно бедных смесях. В-третьих, определяет распространение фронта пламени.

Как работает GDI. В работе GDI различают три возможных режима в зависимости от режима движения.     Работа на сверхбедных смесях. Этот режим используется на малых нагрузках: при спокойной городской езде и загородном движении на скорости до 120 км/час. В этом случае топливо подается в цилиндр практически как в дизеле - в конце такта сжатия. Топливо впрыскивается компактным факелом и смешиваясь с воздухом, направляется сферической выемкой поршня. В результате наиболее обогащенное топливом облако оказывается непосредственно около свечи зажигания и благополучно воспламеняется, поджигая затем бедную смесь. В результате двигатель устойчиво работает даже при общем соотношении воздуха и топлива в цилиндре 40:1.      Работа на стехиометрической смеси. Этот режим используется при интенсивной городской езде, высокоскоростном загородном движении и обгонах. При стехиометрическом составе смеси с воспламенением никаких проблем не возникает. Но поскольку было бы желательно повысить степень сжатия, то важным становится недопустить детонацию и калильное зажигание. Впрыск топлива осущесвтляется в процессе такта впуска. Топливо впрыскивается коническим факелом, распыляется по всему цилиндру и испаряясь, охлаждает воздух в цилиндре. Благодаря охлаждению снижается поверхность детонации и калильного зажигания.     И еще один режим реализует система управления GDI. Он позволяет повысить момент двигателя в том случае, когда водитель, двигаясь на малых оборотах, резко нажимает педаль акселератора.     Когда двигатель работает на малых оборотах, а в него вдруг подается обогащенная смесь, вероятность детонации еще возрастает. Поэтому впрыск осущесвтляется в два этапа. Небольшое количество топлива впрыскивается в цилиндр на такте впуска и охлаждает воздух в цилиндре. При этом цилиндр наполняется сверх бедной смесью (примерно 60:1), в котором детонационные процессы не происходят. Затем, в конце такта сжатия, подается компактная струя топлива, ктоторая доводит соотношение воздуха и топлива в цилиндре до 12:1. А на подготовку детонации времени уже не остается.     Итак, что в конце концов получается на выходе. Степень сжатия удалось поднять до 12-12.5, улучшилось наполнение воздухом. Двигатель устойчиво работает и на очень бедной смеси. Результат: по сравнению с "обычным" бензиновым двигателем GDI расходует на 10% меньше топлива, выдает на 10% больше мощности и выбрасывает на 20% меньше углекислого газа.     Но это в Японии. Из-за того, что бензин в Европе содержит больше серы, при подготовке европейской версии мотора, от одного из преимуществ, повышения мощности, пришлось отказаться...     Но это уже история. Сегодня двигатели с непосредственным впрыском топлива GDI успешно устанавливаются на многих моделях автомобилей разных марок и производителей...

www.gpmar.ru

gpmar.ru

Система питания с непосредственным впрыском топлива.

Системы питания инжекторных двигателей



Непосредственный впрыск топлива

Система непосредственного впрыска инжекторных двигателей аналогична по конструкции системе питания дизельных двигателей Common Rail, предложенной в конце 60-х годов прошлого столетия швейцарским инженером Робертом Хубером, и завоевавшей в настоящее время широкую популярность, активно вытесняя классическую систему питания дизелей благодаря существенным достоинствам.

Слабым местом всех систем непосредственного впрыска топлива в цилиндры двигателя является низкая эффективность смесеобразования – для того, чтобы топливо достаточно быстро сгорало, необходимо его тщательно перемешать с воздухом. По понятным причинам, системы с внешним смесеобразованием в этом плане имеют существенное преимущество, поскольку топливо и воздух перемешиваются еще до подачи в цилиндры двигателя и горение протекает интенсивнее.

Поэтому конструкторам, разрабатывающим дизельные двигатели и бензиновые двигатели с непосредственным впрыском топлива, приходится решать достаточно сложную задачу – как в сотые доли секунды получить внутри цилиндра равномерно распределенную по камере сгорания топливовоздушную смесь требуемого состава и качества.

Одним из путей решения проблемы является повышение давления топлива, впрыскиваемого форсункой в цилиндр двигателя. Топливо, вырывающееся под большим давлением из сопла распылителя форсунки, распыляется более интенсивно, широким фронтом, распространяясь при этом по камере сгорания и активно смешиваясь с воздухом. Второй путь интенсификации смесеобразования, над которым работают конструкторы – создание формы камеры сгорания и головки поршня, способствующей завихрению воздуха при сжатии, что тоже способствует перемешиванию бензина и воздуха в цилиндре.

Для инжекторных двигателей с системой питания, использующей непосредственный впрыск, повышение давления впрыска достигается применением топливного насоса высокого давления, необходимость в котором для систем центрального и распределенного впрыска отсутствует. Конечно же, топливная аппаратура высокого давления ложится определенным бременем на стоимости всей системы питания, что является одним из недостатков системы непосредственного впрыска, тем не менее, достоинства такой системы тоже очевидны. Двигатель, использующий непосредственный впрыск бензина, экономичнее и экологичнее аналогичных двигателей с внешним впрыском, кроме того, он меньше склонен к детонационным явлениям во время работы.

Итак, для того чтобы обеспечить качественное смесеобразование внутри цилиндра, необходимо повысить давление впрыска. Поэтому в системе непосредственного впрыска топлива насос низкого давления подает топливо через фильтр к насосу высокого давления, который создает в аккумуляторе (накопитель, где топливо находится под высоким давлением) давление 5…13 МПа. При превышении давления специальный регулятор перепустит избыточное топливо на вход насоса высокого давления. Значение давления в аккумуляторе (накопителе) регистрируется датчиком давления и подается на электронный блок управления (ЭБУ). Топливо из аккумулятора подается к электромагнитным форсункам, которые включаются по команде от микропроцессора.



Благодаря впрыску топлива сразу после подачи искры в цилиндре обеспечивается воспламенение топливовоздушной смеси нормального состава, который поддерживает ЭБУ. При этом в удаленных от электродов зонах состав горючей смеси остается обедненным и даже бедным (в самых крайних зонах). Таким образом, при непосредственном впрыске образуется неравномерный состав топливовоздушной смеси по всему объему камеры сгорания.

Из возникшего у электродов свечи зажигания очага горения фронт пламени распространяется в периферийные зоны, где воспламеняет бедные составы смеси с коэффициентом избытка воздуха α≥2. В результате существенно повышается топливная экономичность двигателя и снижается вероятность возникновения детонации.

По сравнению с системой распределенного впрыска система непосредственного впрыска обладает следующими недостатками:

  • более высокая стоимость из-за наличия аппаратуры высокого давления;
  • сложные температурные условия работы форсунки, распылитель которой расположен в камере сгорания;
  • сложная форма камеры сгорания, необходимая для лучшего перемешивания воздуха и бензина;
  • повышенные требования к бензину (ограничение содержания серы) и качеству его очистки.

Кроме того, использование насосов высокого давления или насос-форсунок традиционных конструкций осложняется отсутствием у бензина смазывающих свойств.

Тем не менее, благодаря описанным выше преимуществам, в первую очередь – высокой экономичности, система непосредственного впрыска все шире применяется производителями автомобилей и завоевывает популярность у автомобилистов. Можно предположить, что с развитием и совершенствованием технологий изготовления точных деталей системы с непосредственным впрыском займут лидирующие позиции в конструкциях бензиновых автомобильных двигателей.

***

Механическая система впрыска K-Jetronic



k-a-t.ru

Непосредственный впрыск - что это такое?

В первой половине двадцатого века на авиационных двигателях появились первые системы непосредственного впрыска топлива в цилиндры. В сороковые годы прошлого столетия были прекращены попытки установки двигателей с такой системой на легковые автомобили, из-за их повышенного расхода бензина, дороговизны и большого количества дыма на высоких скоростях. Подача топлива непосредственно в цилиндр имеет некоторые затруднения. Форсунки работают в более жёстких условиях, нежели установленные во впускном коллекторе. Более дорогой и усложнённой конструкцией является головка блока цилиндров. Время образования рабочей смеси очень маленькое и соответственно для качественного перемешивания необходимо подать топливо под высоким давлением.

Компания Mitsubishi сумела учесть все эти нюансы и первой внедрила на автомобильных двигателях систему непосредственного впрыска топлива. Автомобиль Mitsubishi Galant с двигателем 1,8 GDI (Gasoline Direct Injection – непосредственный впрыск топлива) начал серийно выпускаться с 1996 года.  Увеличение мощности и снижение расхода бензина – это два достоинства системы непосредственного впрыска. Экономичность можно объяснить возможностью работы при очень бедной смеси. Повышенная мощность является производной от степени сжатия (здесь она доведена до 12,5), так как на карбюраторных двигателях она в районе 10.

Топливный насос двигателя GDI способен выдавать давление в 5 МПА.

Форсунка такого двигателя способна создавать малый или большой факел распыления бензина. Факел будет тем или иным, зависимости от полученного электрического сигнала. Впрыскивание бензина происходит непосредственно в цилиндр.

В таком двигателе поршень имеет специальную форму. Дно поршня выполнено в виде сферической выемки. Эта форма закручивает нагнетаемый воздух, направляет полученный бензин к свече, которая установлена по центру верха цилиндра. Впускной коллектор расположен сверху вертикально. Он не имеет изгибов и из-за этого скорость поступающего воздуха высока.

Двигатель с системой непосредственного впрыска имеет три режима работы:1.    На сверхбедных смесях;2.    На стехиометрической смеси;3.    На резких ускорениях с малых оборотов.

При движении автомобиля со скоростью от ста до ста двадцати километров в час без резких ускорений применяется первый режим. Используется очень бедная смесь (коэффициент излишка воздуха более 2,7). При обычных условиях такая смесь от искры не воспламеняется, из-за этого, как на дизельном двигателе, форсунка компактным факелом подаёт бензин в конце такта сжатия. Сферическая выемка направляет бензин к электроду свечи, а там повышенная концентрация паров топлива легко воспламеняется.

Когда при резких ускорениях необходима высокая мощность, а также при движении на высоких скоростях -  применяется второй режим. При нём нужен стехиометрический состав рабочей смеси. Этот состав рабочей смеси воспламеняется свободно, но при повышенной степени сжатия двигателя GDI, чтобы не было детонации, топливо поступает в виде мощного факела. Мелкодисперсная смесь наполняет камеру сгорания, испаряется и, охлаждая поверхность цилиндра, снижает возможное появление детонации.

При работе двигателя на малых оборотах коленчатого вала и мгновенном нажатии на педаль акселератора появляется большой крутящий момент, так ведёт себя двигатель на третьем режиме. На этом режиме за один цикл форсунка подаёт топливо два раза. Сверхбедная смесь (альфа=4,1) поступает мощным факелом в цилиндр в такт впуска и охлаждает его. Ещё раз компактным факелом форсунка подаёт бензин в конце такта сжатия. Рабочая смесь обогатится, и детонации не произойдёт.

Двигатель, оснащённый системой GDI на десять процентов экономичнее и на двадцать процентов экологичнее, чем двигатель с распределённым впрыском. При равных условиях мощность этого двигателя выше на десять процентов. Но у двигателей такого типа есть один существенный недостаток, на них сильно влияет повышенное содержание серы в топливе. Компания Orbital разработала неповторимый ни на что процесс непосредственного впрыска топлива. Специальная форсунка нагнетает бензин с заранее смешанным воздухом в цилиндр. Она состоит из воздушного и топливного жиклёра.Принцип действия форсунки Orbital.

Из специального компрессора под давлением 0,65 МПа воздух в сжатом состоянии подаётся к воздушному жиклёру, при этом давление топлива выше – 0,8 МПа. Первым начинает подачу топливный жиклёр, потом – воздушный, из-за этого как аэрозоль рабочая смесь поступает мощным факелом. Форсунка установлена в головке блока цилиндров у свечи, её жиклёры направлены на электроды, поэтому воспламенение имеет отличный результат.

Система питания с распределительным впрыском состоит из:  подающих и очищающих топливо и воздух систем; системы, улавливающей и сжигающей пары бензина, электронных датчиков блока управления и системы выпуска с дожиганием выхлопных газов.

remontauto.by

Послойный и распределенный впрыск топлива

Распределенный впрыск топлива – специальная система, устанавливаемая на двигатель, которая отвечает за подачу топливной жидкости в камеру сгорания. Эта система применяется абсолютно на всех инжекторных автомобилях, однако различается по своему характеру:

  • Механический;
  • Послойный;
  • Непосредственный;
  • Моновпрыск.

Самой известной и распространенной моделью этой системы стал послойный впрыск, с помощью которого подача топливо-воздушной смеси происходит отдельно на каждый цилиндр по определенной схеме. Для такого типа подачи необходимы специальные распределительные форсунки.

Понятие последовательности впрыска

Впрыск топлива

Впрыск топлива

На последовательность или фазы впрыска влияют следующие показатели:

  • На каждый отдельный цикл работы двигателя приходится одна фаза впрыска каждой отдельной форсунки;
  • Время этой фазы для каждого типа двигателя может быть разным, однако количество топлива в основном одинаково.

Ключевой особенностью непосредственного впрыска является значительная экономия топлива, отдельные исследования показывают экономию до 15%.

Суть распределенного впрыска топлива

Если говорить более простым языком, то распределенный впрыск топлива работает по такой схеме:

  • В двигатель подается топливно-воздушная смесь;
  • Контроль подачи воздуха происходит за счет дроссельной заслонки;
  • Перед подачей в двигатель смесь разделяется на четыре отдельных потока;
  • Затем каждый отдельный поток попадает в специальный ресивер, где и аккумулируется под большим давлением;

Размер установленного ресивера подбирается таким образом, чтобы не допустить воздушного голодания цилиндров, то есть система должна иметь достаточное количество воздуха для всех режимов работы. С помощью форсунок эта смесь подается в цилиндры, вернее, в камеру сгорания, куда предварительно уже закачан воздух.

Элементы системы распределенного впрыска

Конечно, стоит перечислить все компоненты, с помощью которых работает эта система:

  • Бензонасос. Работа бензонасоса заключается в подачи бензина в специальную рампу, в которой давление поддерживается на постоянном уровне за счет регулятора давления механического типа. В некоторых моделях регулятор давления и бензонасос совмещены;
  • Форсунки, которые оборудованы специальными электромагнитными клапанами с возможностью регулировки производительности;
  • Зажигательный модуль, с помощью которого происходит регуляция искрообразования. Обычно имеет два канала, работающих независимо друг от друга, с помощью которых происходит воспламенение смеси отдельно в 1 и 4, а также во 2 и 3 цилиндрах;
  • Клапан предохранения, который необходим для защиты всех элементов системы от повышенного давления впрыска, оно наблюдается при температурном расширении топливной смеси;
  • Регулятор холостого хода, который обеспечивает поддержание заданных оборотов;
  • Вентилятор системного охлаждения, обороты которого регулируются электрически;
  • Датчик расхода, с помощью которого подается информация на бортовой компьютер;
  • Адсорбер, который необходим для регуляции паров бензина.
Система впрыска

Система впрыска

Процесс работы распределенного впрыска

Работа этой системы предполагает использование преднамеренно обедненной смеси, за счет этого происходит экономия бензина. По сути это должно приводить к понижению мощности, однако повышенная эффективность распрыскивания топлива позволяет этого избежать. Одно и то же количество топлива может сгорать по разному, в зависимости от размера капли разбрызгиваемого топлива. Чем меньше капля, тем выше вероятность получения тумана из смеси бензина и воздуха, в котором распространение пламени происходит более равномерно. Бензин в этом случае сгорает полностью без остатка, а значит, меньшее количество за счет эффективного мелкодисперсного впрыска может давать большее количество тепла.

На исследования по оптимизации сгорания многие автоконцерны тратят большое количество финансов и сил. Наиболее перспективным подвидом распределенного впрыска стал послойный впрыск топлива. При послойном впрыске топливо-воздушная смесь подается в камеру сгорания не одной порцией, а несколькими, но с очень малым интервалом. Такая подача позволила получить дополнительную оптимизацию процесса сгорания.

Дополнительно за счет точного дозирования смеси и открытия форсунок в строго определенный момент происходит экономия. При помощи компьютера момент открытия форсунки, а также срок этого открытия оперативно меняются при изменении нагрузки на двигатель автомобиля. Помимо системы управления форсунками, с помощью компьютера происходит интеллектуальный контроль фаз газораспределения. В зависимости от нагрузки на двигатель происходит автоматическое изменение режимов работы:

  • Холостые обороты;
  • Движение с повышенным уровнем нагрузки;
  • Движение с малым уровнем нагрузки.

Естественно, при разных режимах количество топлива, которое подается в камеру сгорания форсунками, разное и постоянно меняется блоком управления в зависимости от ситуации.

Похожие статьи:

autodont.ru

Что такое впрыск топлива. Распределенный и непосредственный впрыск топлива

18inject Что такое впрыск топлива. Распределенный и непосредственный впрыск топливаИнжектор или впрыск (от английского inject — «впрыск»)топлива — система дозированнойподачи топлива в цилиндры двигателя. Существует много разновидностей впрыска — механический, моновпрыск, распределенный, непосредственный. Мы будем рассматривать только относительно современные электронные системы распределенной подачи топлива, на основе ЭСУД (электронной системы управления двигателем) рассчитывающей подачу топлива на основе сигналов установленных на двигателе датчиков. На рисунке схематично показан принцип многоточечного распределенного впрыска. Подача воздуха (2) регулируется дроссельной заслонкой (3) и перед разделением на 4 потока накапливается в ресивере (4). Ресивер необходим для правильного измерения массового расхода воздуха (т.к измеряется общий массовый расход (MAF) или давление в ресивере (MAP). Последний должен быть достаточного объема для исключения воздушного «голодания» цилиндров  при большом потреблении воздуха и сглаживания пульсаций на пуске. Форсунки (5) устанавливаются в канал в непосредственной близости от впускных клапанов.

Распределенный илиточечный (то есть, когда накаждый цилиндр работает свояфорсунка) впрыск топлива делится натри типа:— Одновременный , когда за одинрабочий цикл двигателя все 4 форсункиотрабатывают два разаодновременно. Диаграмма работы:

18inj 01 Что такое впрыск топлива. Распределенный и непосредственный впрыск топлива

— Попарно-параллельный илигрупповой, когда заодин рабочий такт двигателя форсункиотрабатывают парами (1-4 и 2-3)параллельно два раза за рабочий такт. Диаграмма работы:

18inj 02 Что такое впрыск топлива. Распределенный и непосредственный впрыск топлива

— Фазированный илипоследовательный, когда за одинрабочий такт двигателя каждаяфорсунка отрабатывает по одному разув соответствии с фазой впрыска.   Естественно, что времявпрыска во всех системах различно,при этом количество поданного вцилиндры за один рабочий такттоплива примерно одинаково.Диаграмма работы:

18inj 03 Что такое впрыск топлива. Распределенный и непосредственный впрыск топлива

На диаграммах работы желтым обозначенвпуск, черным — впрыск топлива,молнией — зажигание. В системахвпрыска Bosch MP7.0H используетсянесколько другой алгоритмфазированного впрыска, вместопривычного 1-3-4-2 топливо подаетсяпоследовательно 1-2-3-4.

Суммарное время впрыска на одновременном и попарно-параллельномспособе одинаково, на фазированном —в два раза выше, т.к за 1 циклодновременного и попарно-параллельноговпрыска форсунка включается 2 раза, ана фазированном — 1, поэтому время ееработы увеличено в 2 раза.

I. Датчики

Итак, начнем с информации,необходимой ЭБУ (Электронному блокууправления) для управления впрыскоми зажиганием, т.н «Определяющиепараметры»

Положениеколенвала Датчикположения коленвала (ДПКВ)
Частотавращения коленвала Датчикположения коленвала (ДПКВ)
Массовыйрасход воздуха Датчикмассового расхода воздуха (ДМРВ)
Температураохлаждающей жидкости Датчиктемпературы ОЖ (ДТОЖ)
Положениедросселя Датчикположения дроссельной зсалонки (ДПДЗ)
Напряжениепитания бортовой сети автомобиля  
Скоростьдвижения автомобиля Датчикскорости (ДС)
Наличиедетонации Датчикдетонации (ДД)
Включениекондиционера  
СодержаниеО2 в отработанных газах Датчиккислорода (ДК)
Положение(фаза) распредвала Датчикфазы (ДФ)
Контрольвибрации двигателя Датчикнеровной дороги

Дляфункционирования ЭСУД необязательно наличие всех датчиков.Комплектации зависят от системывпрыска, от норм токсичности и пр. Впрограмме управления есть флагикомплектации, которые информируют ПОо наличии или отсутствии каких-либодатчиков. Втаблице серым выделены основныедатчики, необходимые для работы (исключениесоставляют системы впрыска на «классику»,где не используется датчик детонации).Датчик кислородаиспользуется только в системах скатализатором под нормы токсичностиЕвро-2 и Евро-3 (в Евро-3 используетсядва датчика кислорода (ДК) — докатализатора и после него). Датчикфазы нужен для более точного расчетавремени впрыска в системах сфазированным впрыском. ДПКВ служитдля общей синхронизации системы,расчета оборотов двигателя иположения КВ в определенные моментывремени. ДПКВ — полярный датчик. Принеправильном включении двигательзаводится не будет. При аварии датчика работасистемы невозможна. Это единственный«жизненно важный» в системедатчик, при котором движениеавтомобиля невозможно. Аварии всехостальных датчиков позволяют своимходом добраться до автосервиса.ДМРВ служитдля расчета циклового наполненияцилиндров. Измеряется массовыйрасход воздуха, который потомпересчитывается программой вцилиндровое цикловое наполнение. Приаварии датчика его показанияигнорируются, расчет идет поаварийным таблицам.   ДТОЖ служитдля определения коррекциитопливоподачи и зажигания потемпературе и управленияэлектровентилятором. При аварии датчикаего показания игнорируются,температура берется из таблицы взависимости от времени работыдвигателя. Внимание! Сигнал ДТОЖподается только на ЭБУ, для индикациина панели используется другой датчик. ДПДЗ служитдля расчета фактора нагрузки надвигатель и егоизменения в зависимости от углаоткрытия ДЗ, оборотов двигателя ициклового наполнения.Датчик детонациислужит для контроля за детонацией.При обнаружении последней ЭБУвключает алгоритм гашения детонации,оперативно корректируя УОЗ. В первыхЭСУД применялся резонансный ДД,пришедший с системы GM. Сейчасповсеместно используютсяширокополосные ДД.   Напряжениебортовой сети автомобиля — понему определяется степень коррекцииработы электромагнитных клапановфорсунок и времени накопления вмодуле зажигания (МЗ).Датчик скорости автомобиля используется прирасчетах блокировки/возобновлениятопливоподачи при движении. Этотсигнал так же подается на приборнуюпанель для расчета пробега. 6000сигналов с ДС примерно соответствуют1 км. пробега автомобиля.Датчик фазы служитдля точной синхронизации по временивпрыска в системах с фазированным (последовательным)впрыском. При аварии или отсутствиедатчика система переходит на попарно— параллельную (групповую) системуподачи топлива.  Запрос на  включениекондиционера служит дляинформации ЭБУ о том, что необходимоподготовить двигатель к включениюкондиционера (появлению нагрузки надвигатель) — изменить обороты ХХ ипринцип регулирования ХХ.Датчикнеровной дороги (раньше применяетсядовольно редко, сейчас все чаще,в связи с вводом норм токсичностиЕвро-3) служит для оценкиуровня вибраций автомобиля придетектировании пропусковвоспламенения, с его помощьюоценивается правильность работызажигания (служит для оценки уровнявибраций автомобиля. Это необходимодля правильной работы системыдетектирования пропусковвоспламенения, чтобы определитьпричину неравномерности.)

II. Исполнительные механизмы

Про результатам опросаопределенных в программе датчиков,программа ЭБУ осуществляетуправление исполнительнымимеханизмами (ИМ).

Топливоподача Форсунки
Бензонасос
Системазажигания Модульзажигания
Регулировкахолостого хода  регуляторхолостого хода (РХХ) 
Диагностика ЛампаCheck Engine (CE)
Выводданных через колодку диагностики
Вентиляторсистемы охлаждения  
Функциимаршрутного компьютера Сигнална тахометр
Сигналрасхода топлива
Муфтакомпрессора кондиционера  
Системаулавливания паров бензина (Евро-2;3) КлапанСУПБ (или «адсорбер»)

Форсунка— прецензионный электромагнитный (встречаютсяпьезоэлектрические) клапан снормированной производительностью.Служит для впрыска вычисленного дляданного режима движения количестватоплива. Бензонасос предназначендля нагнетания топлива в топливнуюрампу. Давление в топливной рампеподдерживается вакуумно-механическимрегулятором давления. В некоторыхсистемах регулятор давления топлива(РДТ) совмещен с бензонасосом.Исправный бензонасос безрегулирования (с пережатой обраткой)должен создавать в магистралидавление не менее 5 атм. Рабочеедавление на ХХ должно быть около 2,2-2,4атм, на ХХ со снятым вакуумом — 3 атм.Бензонасос, совмещенный с РДТ,используемый в системах с безсливнойрампой — 3,8 атм. Модуль зажигания— электронное устройство управленияискрообразованием. Содержит в себедва независимых канала для поджигасмеси в 1-4 и 2-3 цилиндрах. То естьреализуется принцип «холостойискры». В последних модификацияхнизковольтные элементы МЗ помещены вЭБУ, а для получения высокогонапряжения используются либовыносная двухканальная катушказажигания, либо катушки зажиганиянепосредственно на свече.   Регулятор холостого ходаслужит (совместно с УОЗ —регулированием) для поддержаниизаданных оборотов ХХ. Представляетсобой прецизионный шаговыйдвигатель, регулирующий обводнойканал воздуха в корпусе дроссельнойзаслонки, для обеспечения двигателявоздухом, необходимым дляподдержания ХХ (7-12 кг./час) призакрытой дроссельной заслонке.   Вентиляторсистемы охлаждения управляетсяЭБУ по сигналам ДТОЖ. Разница междувключением/выключением как правило4-5 грд.С.Сигнал натахометр выдается на приборнуюпанель для индикации текущихоборотов двигателя.   Сигнал расходатоплива выдается на маршрутныйкомпьютер — 16000 импульсов на 1расчетный литр израсходованноготоплива. Данные эти приблизительные,т.к рассчитываются они на основесуммарного времени открытияфорсунок с учетом некоторогоэмпирического коэффициента, которыйнеобходим для компенсациипогрешностей измерения, вызванныхработой форсунок в нелином участкедиапазона, асинхроннойтопливоподачей и другими факторами.Как показывает практика, сигналрасхода топлива более — менеесоответствует истине на системах сДК.   Адсорбер, он жеСУПБ является элементомзамкнутой цепи рециркуляции паровбензина. Нормами Евро-2 непредусмотрен контакт вентиляциибензобака с атмосферой, пары бензинадолжны собираться (адсорбироваться)и при продувке посылаться в цилиндрына дожиг.    Управление муфтойкондиционера служит длявключения кондиционера послеобработки сигнала на запросвключения кондиционера, т.е когдасистема готова к этому.

III.Электронный блок управления

ЭБУ (электронныйблок управления) - по сутиспециализированный микрокомпьютер,обрабатывающий данные, поступающие сдатчиков и по определенномуалгоритму управляющийисполнительными механизмами.Самапрограмма хранится в микросхеме ПЗУ,английское название микросхемы — CHIP (чип),отсюда и пошло название ЧИП-ТЮНИНГ,то есть изменение программыуправления двигателем. Содержимое«чипа» — обычно делится на двефункциональные части — собственнопрограмма, осуществляющая обработкуданных и математические расчеты иблок калибровок. Калибровки — набор (массив)фиксированных данных (переменных)для работы программы управления.Сам чип-тюнинг делится,соответственно два направления:рекалибровку переменных программы ина изменение алгоритмов обработкикалибровок. Часто эти направлениясмешиваются, но цель у них одна —улучшение эксплуатационныххарактеристик управляемогодвигателя. Следует иметь ввиду, чтодля правильной работы любойпрограммы необходимо наличиеполностью исправных датчиков и ИМ.Тюнинговые прошивки, как правило,более точно настроены но и болеетребовательны к состоянию датчиков иИМ. При «затюнивании»неисправности можно получить прямопротивоположный ожидаемому эффект.Поэтому любой чип-тюнинг долженпроизводиться на полностьюпродиагностированном авто, ккоторому нет никаких замечаний.Самый «правильный», но самыйсложный и дорогой чип-тюнинг — этонастройка программы на конкретноеавто и конкретного водителя.

Последниеразработки в области системуправления двигателем — это новыеконтроллеры Bosch MP7.0H и Bosch M7.9.7. Вотличие от предыдущих систем, здесьиспользуется так называемая ‘моментная’математическая модель двигателя,такие системы намного сложнеекалибруются и более ‘капризны’ вслучае изменения физическихпараметров двигателя (рабочий объем,геометрия, впуск-выпуск). В последнемслучае требуется калибровка самойматмодели (которая включаетнесколько сотен калибровок), чтопрактически невозможно безспециального оборудования и методик.Несмотря на это можно утверждать, чтов настоящее время данные системыуспешно поддаются чип-тюнингу.

genariconlinedrugsarizona.info

Устройство и принцип действия система непосредственного впрыска бензина Bosch Motronic MED 7

Первостепенной целью разработки новых двигателей является снижение расхода топлива и соответствующее ему уменьшение выброса вредных веществ. В трехкомпонентных нейтрализаторах удается преобразовать в безвредные вещества до 99%выбрасываемых с отработавшими газами углеводородов, оксидов азота и оксида углерода. Выбросы образуемого при сгорании диоксида углерода (CO2), способствующего образованию парникового эффекта, могут быть снижены только в результате уменьшениярасхода топлива. Однако, у двигателей с внешним смесеобразованием (с впрыском бензина во впускной трубопровод) резервы снижения расхода топлива практически отсутствуют. Двигатели с непосредственным впрыском бензина в цилиндры, осуществляемым посредством системы Bosch Motronic MED 7 позволяют экономить до 15% топлива по сравнению с сопоставимым двигателем с впрыском бензина во впускной трубопровод.

Как осуществляется подача топлива?

 

Зачем нужен непосредственный впрыск бензина?

 

Первостепенной целью разработки новых двигателей является снижение расхода топлива и уменьшение выброса вредных веществ.

При этом должны быть получены следующие результаты:

  • снижение благодаря экономии топлива затрат на эксплуатацию автомобиля и получение поощрительных налоговых льгот для автомобилей с низкими выбросами вредных веществ
  • снижение загрязнения среды обитания вредными веществами
  • экономия сырьевых ресурсов

  • Электронное регулирование системы охлаждения, регулируемые фазы газораспределения и рециркуляция отработавших газов уже нашли применение на многих двигателях
  • Ввиду необходимости сохранения достаточной равномерности вращения коленчатого вала отключение цилиндров имеет смысл применять только на многоцилиндровых двигателях. Для снижения вибраций четырехцилиндровых двигателей целесообразно применять уравновешивающие валы
  • Переменная степень сжатия и изменяемые фазы газораспределения реализуются только посредством достаточно мощных
  • механических приводов
  • Дальнейшая разработка различных способов сжигания бедных смесей прекращена в ползу создания двигателей с непосредственным впрыском
  • Непосредственный впрыск бензина принят как наиболее эффективное средство экономии топлива,
  • обеспечивающее его снижение до 20%

 

Преимущества непосредственного впрыска бензина

Уменьшение дросселирования при работе двигателя на бедных послойной и гомогенной смесях.

При работе двигателя на этих смесях коэффициент избытка воздуха изменяется в пределах от 1,55 до 3. При этом дроссельнаязаслонка открывается на больший угол, то есть впуск воздуха в цилиндры осуществляется с меньшим сопротивлением.

Работа двигателя на бедных смесях.

При применении послойного смесеобразования удается эффективно сжигать бедные смеси с коэффициентом избытка воздуха от 1,6 до 3, а при работе двигателя на гомогенной бедной смеси коэффициент избытка воздуха равен приблизительно 1,55.

Снижение потерь тепла в стенки.

Так как горение смеси происходит главным образом вблизи свечи зажигания, снижаются потери тепла в стенки цилиндра исоответственно повышается термический коэффициент полезного действия.

Сжигание гомогенной смеси с высоким содержанием перепускаемых отработавших газов.

Благодаря высокой турбулизации заряда цилиндра двигателя удается эффективно сжигать гомогенные бедные смеси с содержанием отработавших газов до 25%. Чтобы впустить в цилиндры то же количество воздуха, какое поступает в них при перепускенебольших доз отработавших газов, нужно открывать дроссельную заслонку на больший угол. При этом воздух засасывается вцилиндры с меньшим сопротивлением, то есть снижаются насосные потери.

Степень сжатия

При непосредственном впрыске бензина затрачиваемое на его испарение тепло отбирается у поступившего в цилиндрыдвигателя воздуха. В результате снижается вероятность детонационного сгорания и степень сжатия может быть повышена.Повышение степени сжатия приводит к росту давления в конце сжатия и соответственно к увеличению термического коэффициента полезного действия.

Расширение диапазона принудительного холостого хода с выключенной подачей топлива.

Частота вращения холостого хода, на которой производится возобновление подачи топлива может быть снижена, так как впрыскиваемое топливо практически не осаждается на стенках цилиндра и большая его часть может быть немедленно использована. Поэтому двигатель работает устойчиво с пониженной частотой вращения.

Способы смесеобразования.

Помимо бедной послойной и стехиометрической гомогенной смесей в двигателе FSI используется смесь третьего вида, а именно, бедная гомогенная смесь. Этот вид смеси позволяет получить меньший расход топлива, чем смесь стехиометрического состава с добавкой перепускаемых отработавших газов. Выбор того или иного способа смесеобразования производится блоком управления двигателем в зависимости от крутящего момента и мощности двигателя с учетом требований к выбросу вредныхвеществ и требований безопасности.

Работа двигателя при послойном смесеобразовании.

Послойное смесеобразование используется при работе двигателя при малых и средних нагрузках и частотах вращения.Благодаря послойному распределению топлива в камере сгорания двигатель работает при общем коэффициенте избытка воздуха от 1,6 до 3.

  • В средней части камеры сгорания, вблизи свечи зажигания, находится легко воспламеняемая рабочая смесь.
  • Эта смесь окружена оболочкой, состоящей в идеальном случае из чистого воздуха и перепускаемых отработавших газов.

Работа двигателя на бедной гомогенной смеси.

На промежуточных режимах, расположенных между режимами работы двигателя на послойной смеси и гомогенной стехиометрической смеси, используются бедная гомогенная смесь. Коэффициент избытка воздуха бедной гомогенной, т. е. однородной во всем объеме камеры сгорания, смеси приблизительно равен 1,55.

Работа двигателя на гомогенной смеси стехиометрического состава.

Двигатель работает на гомогенной смеси стехиометрического состава при выходе на режимы больших нагрузок и высоких частот вращения. Коэффициент избытка воздуха этой смеси равен (согласно определению) единице.

Рабочий процесс.

Рабочий процесс определяется способом смесеобразования и процессами преобразования энергии в камере сгорания.Работа двигателя на гомогенных смесях При работе двигателя на гомогенных смесях топливо впрыскивается в цилиндр на тактевпуска и равномерно распределяется по всей массе засасываемого воздуха.

Работа двигателя при послойном смесеобразовании.

Послойная смесь формируются около свечи зажигания с помощью поршня специальной формы и за счет вихревого движения воздуха. Форсунка расположена так, что впрыскиваемое ею топливо направляется на выемку в днище поршня и отклоняется еестенкой в направлении свечи зажигания. С помощью установленной во впускном канале заслонки и аэродинамической выемки впоршне в цилиндре двигателя создается вихревое движение воздуха, которое поддерживает перенос топлива к свече зажигания. Таким образом горючая смесь образуется в процессе движения топлива и воздуха.

Работа двигателя при послойном смесеобразовании.

Переход двигателя на режим работы с использованием послойной смеси осуществляется при следующих условиях:

  • нагрузка и частота вращения двигателя соответствуют режимам, на которых эффективно использование послойного смесеобразования;
  • системой не зарегистрирована неисправность, из/за которой может повыситься выброс вредных веществ;
  • температура охлаждающей жидкости выше 50 °C,
  • датчик окислов азота исправен;
  • температура накопительного нейтрализатора находится в пределах от 250°C до 500°C. Если эти предпосылки выполнены, можно перейти на послойное смесеобразование.

Процесс впуска

При работе на послойной смеси дроссельную заслонку открывают по возможности больше, чтобы до максимума снизить потери на дросселирование. При этом установленная во впускном канале вспомогательная заслонка (называемая в дальнейшем впускной заслонкой) перекрывает его нижнюю часть. В результате повышается скорость проходящего через верхнюю часть канала потока воздуха, который закручивается затем в цилиндре.

Движение воздуха в цилиндр двигателя.

Специальная форма выемки в днище поршня способствует образованию и усилению вихря в цилиндре двигателя.

Впрыск топлива.

Топливо впрыскивается в последней трети такта сжатия. Впрыск начинается приблизительно за 60° и заканчивается приблизительно за 45° до в. м. т. такта сжатия. Начало впрыска оказывает значительное влияние на расположение облачка смесиотносительно свечи зажигания.

Топливо впрыскивается в направлении топливной выемки в поршне. Желаемые размеры облачка смеси достигаются подбором геометрических параметров форсунки.

Специальная форма топливной выемки и движение поршня к в. м. т. способствуют отклонению движения капель топлива к свечезажигания. Это движение топлива поддерживается вихревым движением воздуха. В процессе движения к свече зажиганиятопливо смешивается с поступившим в цилиндр воздухом.

Процесс смесеобразования

Для образования послойной смеси предоставляется время, соответствующее повороту коленчатого вала на 40° / 50°. Отпродолжительности этого процесса зависит способность смеси к воспламенению. Если время между впрыском и моментом подачи искры слишком мало, смесь оказывается не подготовленной к воспламенению. При слишком большом промежутке времени между этими процессами смесь распределяется по всему объему камеры сгорания. При выполнении указанных выше условий в центре камеры сгорания, т. е. вблизи свечи, образуется легко воспламеняемая смесь. Эта смесь окружена оболочкой, состоящей из свежего воздуха и перепущенных отработавших газов. Общий коэффициент избытка воздуха в камере сгорания может быть равен при этом от 1,6 до 3.

Процесс сгорания.

После поступления топливо/воздушной смеси к свече зажигания она поджигается искрой. При этом воспламеняется только облако смеси, в то время как остальные газы образуют его оболочку. Благодаря изолирующему действию этой оболочки снижаются потери тепла в стенки камеры сгорания и соответственно увеличивается термический к. п. д. двигателя.Зажигание смеси должно производиться в конце такта сжатия в пределах достаточно узкого угла поворота коленчатого вала,ограниченного моментом окончания впрыска топлива и промежутком времени, необходимого для образования смеси.

Работа двигателя на бедной гомогенной смеси.

Эта смесь используется на режимах, которые находятся в поле многопараметровой характеристики между режимами работы двигателя при послойном смесеобразовании и режимами его работы на гомогенной смеси стехиометрического состава. Коэффициент избытка воздуха этой смеси равен практически 1,55. Двигатель может эффективно работать на этой смеси при тех же условиях, которые предписаны для послойной смеси.

Процесс впуска.

Как при послойном смесеобразовании, работа двигателя на бедной гомогенной смеси осуществляется с максимальнооткрытой дроссельной заслонкой при закрытых впускных заслонках. При этом снижаются потери на дросселирование исоздается интенсивное движение воздуха в цилиндре двигателя.

Процесс впрыска топлива

Впрыск топлива осуществляется непосредственно в цилиндр в процессе впуска. Он начинается приблизительно за 300° дов. м. т. такта сжатия. При этом блок управления двигателем регулирует подачу топлива таким образом, чтобы коэффициент избытка воздуха был равен приблизительно 1,55.

Процесс смесеобразования

Благодаря раннему моменту впрыска предоставляется достаточно большое время до момента зажигания для образования гомогенной смеси во всем объеме камеры сгорания.

Процесс сгорания

Как и при работе на любой гомогенной смеси момент зажигания не зависит от процесса смесеобразования. Смесь горит при этом во всем объеме камеры сгорания.

Работа двигателя на гомогенной смеси стехиометрического состава.

Работу двигателя на гомогенной смеси стехиометрического состава можно сравнить с работой двигателя с впрыском бензина во впускной трубопровод. Существенное различие заключается только в месте впрыска топлива, который производится в данном случае непосредственно в цилиндры двигателя. Крутящий момент двигателя может быть изменен как смещением угла опережения зажигания(кратковременно), так и изменением поступающей в цилиндры массы воздуха (долговременно). При этом впрыскивается такое количество топлива, которое необходимо для образования стехиометрической смеси, коэффициент избытка воздуха которой (по определению) равен единице.

Процесс впуска

Дроссельная заслонка открывается соответственно перемещению педали акселератора. Впускная заслонка может быть открыта илизакрыта в зависимости от режима работы двигателя. При частичных нагрузках и в среднем диапазоне частот вращения эта заслонка закрыта, в результате чего входящий в цилиндр поток воздуха закручивается, улучшая смесеобразование. По мере увеличения нагрузки и частоты вращения поступление воздуха только через верхнюю часть впускного канала оказывается недостаточным. Поэтому заслонкуповорачивают, открывая нижнюю часть впускного канала.

Впрыск топлива

Впрыск топлива производится непосредственно в цилиндр на такте впуска приблизительно за 300° до в. м. т. такта сжатия.

Процесс смесеобразования

Так как впрыск топлива производится на такте впуска, на процесс смесеобразования отводится относительно много времени.Благодаря этому впрыснутое в цилиндр топливо равномерно распределяется по всему объему поступившего в него воздуха.Коэффициент избытка воздуха смеси в камере сгорания равен единице.

Процесс сгорания

Крутящий момент двигателя, расход топлива и выброс вредных веществ при работе на гомогенной смеси зависят от угла опережения зажигания.

 

Система впуска

 

У двигателей с непосредственным впрыском бензина система впуска была изменена в соответствии с их потребностями. Ее особенностью является целенаправленное воздействие на потоки воздуха в цилиндрах двигателя в зависимости от режимов его работы.

  1. Пленочный измеритель массового расхода воздуха с датчиком температуры воздуха на впуске для более точного определения нагрузки двигателя
  2. Датчик давления во впускном трубопроводе для расчета количества перепускаемых отработавших газов
  3. Система заслонок во впускных каналах для целенаправленного управления потоками воздуха на входе в цилиндры двигателя
  4. Электромагнитный клапан системы рециркуляции отработавших газов с увеличенными проходными сечениями для перепуска большего количества газов
  5. Датчик давления для регулирования разрежения в магистрали к вакуумному усилителю тормозного привода
  6. Блок управления дроссельной заслонкой
  7. Клапан продувки адсорбера
  8. Блок управления системой Motronic

Система впускных заслонок

Впускные заслонки и их привод расположены в нижней и верхней частях впускной системы. Заслонки служат для управления потоками воздуха, поступающего в цилиндры двигателя, в зависимости от режимов работы двигателя.

Работа двигателя с закрытыми впускными заслонками

При работе двигателя на послойных и бедных гомогенных смесях, а также на некоторых режимах с использованием гомогенных смесей стехиометрического состава заслонки перекрывают нижние части впускных каналов, расположенных в головке цилиндров. При этом воздух проходит в цилиндры только через верхние части впускных каналов. Форма верхней части впускного канала подобранатаким образом, чтобы впускаемый в цилиндр воздух закручивался на входе в него. Помимо этого повышенная скорость проходящего через зауженный канал воздуха способствует смесеобразованию.

Реализуются два преимущества:

  • При послойном смесеобразовании вихревое движение воздуха обеспечивает перенос топлива к свече зажигания. Образование смеси осуществляется в процессе этого движения.
  • Вихревое движение воздуха создает условия для образования гомогенных бедной и стехиометрической смесей. Благодаря ему повышается воспламеняемость и достигается стабильное горение бедных смесей

 Работа двигателя с открытыми впускными заслонками

При работе двигателя на режимах с высокой нагрузкой и при высоких частотах вращения воздушные заслонки открыта и воздухпроходит в цилиндры через обе части впускных каналов. Большое сечение впускного канала обеспечивает наполнение цилиндра,необходимое для получения высокой мощности и крутящего момента

Определение количества перепускаемых отработавших газов

Блок управления двигателем определяет с помощью измерителя расхода поступающую в цилиндры массу воздуха и рассчитывает соответствующее ее величине давление во впускном трубопроводе. При рециркуляции отработавших газов их масса добавляется к массе свежего воздуха и соответственно повышается давление во впускном трубопроводе. Датчик давления во впускном трубопроводе реагирует на это изменением напряжения на его выходе, которое передается на вход блока управления двигателем. По величине этого сигнала определяется суммарное количество воздуха и отработавших газов, поступающих в цилиндры двигателя. Количество перепускаемых отработавших газов определяется вычитанием количества свежего воздуха из суммарной величины. Преимуществом такого метода определения количества перепускаемых отработавших газов является возможность увеличения их доли в рабочей смеси и приближения к границе воспламеняемости смеси.

Последствия при отсутствии сигнала датчика давления во впускном трубопроводе.При выходе датчика давления во впускном трубопроводе из строя блок управления определяет количество перепускаемых газоврасчетным путем и снижает перепуск против значений, соответствующих многопараметровой характеристике.

Топливная система

Топливная система разделена на контуры высокого и низкого давления. Часть топлива подводится в цилиндры через систему улавливания паров бензина.

Контур низкого давления

Контур низкого давления охватывает часть топливной системы от расположенного в баке электронасоса до насоса высокого давления. Давление топлива в этом контуре обычно равно 3 бар и только при пуске горячего двигателя может быть повышено до 5,8 бар.

Контур высокого давления

Контур высокого давления начинается с топливного насоса высокого давления, который подает топливо в распределительныйтрубопровод. На распределительном трубопроводе установлен датчик давления топлива, сигналы которого используются дляподдержания давления в диапазоне от 50 до 100 бар посредством клапана регулятора. Впрыск топлива в цилиндры осуществляется через форсунки высокого давления.

В контур низкого давления входят:     1. топливный бак     2. топливный электронасос     3. топливный фильтр     4. клапан перепуска топлива     5. регулятор давления топливаВ контур высокого давления входят:     6. топливный насос высокого давления     7. трубопровода высокого давления     8. распределительный трубопровод     9. датчик давления топлива     10. клапан регулятора давления     11. форсунки высокого давления

Форсунки высокого давления

Форсунки установлены в головке цилиндров. Через них топливо впрыскивается под высоким давлением непосредственно в цилиндры двигателя. Назначение Форсунки должны мелко распыливать топливо за возможно короткий промежуток времени. Способ подачи топлива зависит при этом от режима работы двигателя. При послойном смесеобразовании топливо должно направляться в зону свечи зажигания, а при работе двигателя на гомогенных смесях его необходимо равномерно распределять в объеме камеры сгорания.

Чтобы получить наилучшее распределение топлива при послойном смесеобразовании, угол конуса факела топлива принят равным 70°, а ось конуса наклонена на 20°

Эта система должна обеспечивать выполнение законодательных норм выброса углеводородов. Эта система предотвращает попадание паров бензина из бака автомобиля

в окружающую среду. Пары топлива накапливаются в адсорбере с активированным углем и периодически отсасываются в двигатель, где они сгорают. 

При работе двигателя на гомогенных смесяхПри этом рабочая смесь равномерно распределяется по объему камеры сгорания. Поступающие из адсорбера пары бензина сгорают вместе с рабочей смесью во всем объеме камеры сгорания.

При послойном смесеобразованииПри послойном смесеобразовании способная к воспламенению рабочая смесь находится только в зоне свечи зажигания. Часть поступившего из адсорбера топлива оказывается при этом в зоне невоспламеняемой смеси. Это может привести к неполному сгоранию топлива и повышенному выбросу углеводородов с отработавшими газами. Поэтому переход на послойное смесеобразование производится только при небольшом содержании топлива в адсорбере.

Блок управления двигателем рассчитывает количество топлива, которое может быть отведено из адсорбера, и вырабатывает команды на открытие клапана его продувки, изменение дозы впрыскиваемого топлива и установку дроссельной заслонки. Для этого блоком управления используется следующая данные:

  • нагрузка двигателя, определяемая по сигналам измерителя расхода воздуха с пленочным чувствительным элементом
  • частота вращения коленчатого вала, определяемая по сигналам датчика
  • температура воздуха на впуске, определяемая по сигналам датчика
  • заряд адсорбера, определяемый по сигналам датчика кислорода

Система зажигания

Задачей системы зажигания является воспламенение рабочей смеси в нужный момент времени. Для этого блок управления двигателем должен определять для каждого режима работы двигателя угол опережения зажигания, энергию искры и длительность искрообразования. От угла опережения зажигания зависят крутящий момент, выброс вредных веществ и расход топлива двигателя.

При послойном смесеобразованиимомент зажигания может изменяться в узком диапазоне значений угла поворота коленчатого вала, которому соответствуетобразование способной к воспламенению смеси.

При работе на гомогенных бедной и стехиометрической смесях.Требования к зажиганию не отличаются от них у двигателей с впрыском бензина во впускные каналы. Ввиду одинакового распределениясмеси у двигателей с обеими системами впрыска оптимальные углы опережение зажигания практически не отличаются.

При расчете оптимальных углов опережения зажигания используются:

 

Основные исходные данные:     1. о нагрузке двигателя, определяемые по сигналам измерителя расхода воздуха и датчика температуры воздуха на впуске,     2. о частоте вращения коленчатого вала, измеряемой по сигналам датчика

Вспомогательные данные, определяемые по сигналам:     3. датчика температуры охлаждающей жидкости,     4. с блока управления дроссельной заслонкой,     5. датчика детонации,     6. датчиков положения педали акселератора,     7. датчика кислорода.

Система выпуска

Эта система была приспособлена к двигателю с непосредственным впрыском бензина. До настоящего времени система очисткиотработавших газов двигателей с непосредственном впрыском была проблематичной. Это связано с тем, что образующиеся при работе на бедных гомогенных и послойных смесях оксиды азота не могут быть восстановлены в обычных трехкомпонентных нейтрализаторах до уровня, допускаемого законодательством. Поэтому для двигателей с непосредственным впрыском бензина применяют накопительные нейтрализаторы, которые способны удерживать оксиды азота при работе на бедных смесях. При заполнениинейтрализатора до предела производится перевод его на режим регенерации, в процессе которого накопленные в нем оксиды азотавыводятся и восстанавливаются до азота.

Охлаждение отработавших газовОхлаждение отработавших газов применяется для того, чтобы поддерживать температуру в накопительном нейтрализаторе в диапазоне от 250 до 500 °C. Только в этом температурном диапазоне обеспечивается удерживание оксидов азота в накопительном нейтрализаторе. Накопительный нейтрализатор необходимо охлаждать также из-за снижения его аккумулирующей способности при перегреве до температур свыше 850 °C. 

Охлаждение выпускного коллектораВ подкапотном пространстве предусмотрен воздуховод, который позволяет преднамеренно охлаждать выпускной коллектор направляемым на него потоком свежего воздуха и таким образом снижать температуру отработавших газов.

Раздвоенный выпускной трубопроводЭтот трубопровод расположен перед накопительным нейтрализатором. Его установка является вторым мероприятием поснижению температуры отработавших газов и соответственно накопительного нейтрализатора. Температура газов снижаетсяза счет увеличения теплоотдачи через развитую поверхность трубопровода.

При одновременном использовании обоих мероприятий удается снижать температуруотработавших газов на 30*100 °C в зависимости от скорости автомобиля.

Предварительный трехкомпонентный нейтрализатор.Этот нейтрализатор встроен в выпускной коллектор. Благодаря близости к двигателю он быстро прогревается до рабочей температуры, при которой начинается очистка отработавших газов. Благодаря этому могут быть выполнены жесткие нормы на выбросы вредных веществ.

НазначениеНейтрализатор служит для каталитического преобразования образующихся при сгорании вредных веществ в безвредные вещества.

Принцип действия

При работе двигателя на гомогенной стехиометрической смеси

Углеводороды (HC) и оксид углерода (CO) отнимают у оксидов азота (NOx) кислород (O), окисляясь до воды (h3O) и диоксида углерода (CO2). При этом оксиды азота восстанавливаются до азота (N2).

При работе двигателя на бедных смесях

Углеводороды и оксид углерода окисляются кислородом, содержащимся в избытке в отработавших газах. При этом кислород уоксидов азота не отнимается. Поэтому при работе на бедных смесях трехкомпонентный нейтрализатор не может осстанавливать оксиды азота. Последние проходят через трехкомпонентный нейтрализатор и направляются в нейтрализатор накопительного типа.

www.carluck.ru